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We model a labor market where employed workers search on the job and

firms direct workers’ search using wage offers and employment probabilities.

Applicants observe all offers and face a trade-off between wage and employment

probability. There is wage dispersion among workers, even though all workers and

jobs are homogeneous. Equilibrium wages form a ladder, as workers optimally

choose to climb the ladder one rung at a time. This is because low-wage applicants

are relatively more sensitive to employment probability than to wage and thus

forgo the opportunity to apply for a high wage, with a lower chance of success.

1. INTRODUCTION

We study a large labor market with on-the-job search and directed search. Em-
ployed workers search on the job. Search is directed in the sense that each firm
takes into account how its offer will affect its own matching rate and workers’ ap-
plication, as opposed to undirected search where an exogenous-matching function
determines agents’ match rates. All workers and all jobs are identical. The number
of workers is large and fixed, whereas the number of jobs is determined by free
entry. The recruiting process in each period has two stages. In the first stage, each
firm announces a wage level and an employment probability for the applicants. In
the second stage, the applicants observe all offers and decide which job to apply to.
After receiving the applicants, a firm selects one and pays the announced wage.
Recruiting generates endogenous transition of workers between jobs, whereas
exogenous separation sends workers into unemployment. We characterize the
stationary equilibrium and study its properties.

The search literature (see Table 1 for a rough guide) offers very little knowledge
about the equilibrium with directed search on the job. The original search models
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TABLE 1

SEARCH MODELS

Whether Employed Workers Are

Allowed to Search on the Job

Type of Search No Yes

Undirected Diamond (1982) Burdett and Judd (1983)

Mortensen (1982) Burdett and Mortensen (1998)

Pissarides (1990) Pissarides (1994)

Directed Peters (1991) This article

Montgomery (1991)

excluded both on-the-job search and directed search. The subsequent research has
relaxed these two assumptions separately but not simultaneously. For example,
Burdett and Mortensen (1998) and Pissarides (1994) have examined undirected
search on the job, whereas Peters (1991) and Montgomery (1991) have examined
directed search without on-the-job search.2 The combined feature of directed
search and on-the-job search will be the focus in this article.

Our study is also motivated by the following evidence on job/worker flows and
wage inequality: (1) A large fraction of overall wage inequality is within-group
inequality, i.e., among workers who have similar observed characteristics such
as education, experience, and age (e.g., Juhn et al., 1993); (2) a large fraction of
job changes are direct job-to-job transitions, and wage mobility is predominantly
within-group mobility;3 (3) wage mobility is limited in the sense that the proba-
bilities of staying in the same quintile of wages and moving to adjacent quintiles
account for most of wage changes annually (Buchinsky and Hunt, 1999); and (4)
the density of the wage distribution is hump-shaped, with the hump occurring
at a low-wage level (Kiefer and Neumann, 1993). A model generating wage dis-
persion among homogeneous workers is able to replicate fact (1). To account for
fact (2), a model must incorporate on-the-job search. However, existing models
of on-the-job search have difficulties accounting for facts (3) and (4).

To substantiate this claim, consider the influential model of on-the-job search by
Burdett and Mortensen (1998; henceforth the BM model). The BM model success-
fully generates wage dispersion among homogeneous workers with homogeneous

2 The model by Burdett and Judd (1983) is for the goods market, but the essence is carried over to

the on-the-job search model by Burdett and Mortensen (1998). Similarly, the directed search model by

Peters (1991) is for the goods market. Other examples of on-the-job search models are Coles (2001),

Burdett and Coles (2003), and Postel-Vinay and Robin (2002). Other examples of directed search

models are Acemoglu and Shimer (1999a,b), Cao and Shi (2000), Julien et al. (2000), Moen (1997),

Peters (2000), Burdett et al. (2001), Shi (2001, 2002a,b), and Shimer (2001).
3 Topel and Ward (1992) study U.S. workers’ job changes using the (U.S.) Longitudinal Employee-

Employer Data. They report that an average worker has changed jobs almost seven times by the

10th year after entering the labor market and, for workers with one or more years of experience,

direct job-to-job transition dominates the transition from employment to nonemployment. Using the

(U.S.) National Longitudinal Survey of Youth, Buchinsky and Hunt (1999) report that the index of

within-group wage mobility is one order of magnitude larger than the index of between-group mobility.
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jobs. The important insight is that on-the-job search creates heterogeneity among
workers’ reservation wages (i.e., their current wages), which supports a contin-
uum of wages as an equilibrium. However, because search is undirected, each
worker contacts all job openings randomly and with equal probability. To ensure
that firms are indifferent between offering different equilibrium wages, there must
be more firms offering high wages than low wages. Thus, the density function of
offer wages is increasing (and convex). This induces an increasing (and convex)
density function of employed wages, which does not accord well with fact (4).
Moreover, because matching is exogenous, a worker’s transition probabilities to
higher wages (conditional on his current wage) are proportional to the distribution
of offer wages.4 Since more firms recruit at high wages than at low wages, then a
worker is more likely to transit to a very high wage than to a wage just above his
current wage. This pattern of wage mobility is opposite to that in fact (3).

Of course, one can introduce either observed or unobserved heterogeneity
among workers or jobs into the existing models to make their predictions more
realistic. For example, to generate the hump-shaped wage distribution, one may
argue that workers differ in ability or that jobs differ in quality (e.g., van den Berg
and Ridder, 1998). To generate limited wage mobility, one may argue that work-
ers’ abilities are gradually observed by their employers (e.g., Jovanovic, 1979) or
there is match-specific productivity or there is learning-by-doing on the job. These
ex ante and ex post sources of heterogeneity are realistic, and our work does not
diminish their importance. However, because within-group wage dispersion is suf-
ficiently large (fact (1)), it is useful to construct a theoretical model to generate
wage dispersion among homogeneous workers.

Our model generates nondegenerate dispersion of ex ante optimal wage offers
by homogeneous firms to homogeneous workers. On-the-job search is important
for such dispersion, as in the BM model. If on-the-job search is not permitted,
a single equilibrium wage will emerge as in previous models of directed search.5

However, the equilibrium in our model is fundamentally different from that in
the BM model.

In fact, directed search destroys the BM type of equilibrium, by requiring work-
ers’ application to be optimal. In the BM model, job application is exogenous, as
a matching function assigns workers to jobs. Even though applying to a high wage
yields higher expected payoff than applying to a low wage, workers are not allowed
to choose which offers to apply to. Once this assumption is eliminated, the work-
ers will choose to apply to only those offers that maximize their expected surplus,
that is, the product of the ex post gain in value and the probability of obtaining

4 More precisely, if v(·) is the density of offer wages and V(·) the corresponding cumulative distri-

bution, then the density of transition for a worker employed at wage w to a higher wage w′ is v(w′)/
[1 − V(w)].

5 Some directed search models, such as Julien et al. (2000), generate ex post wage dispersion by

allowing firms or workers to auction the jobs. However, all firms use the same mechanism that generates

the same expected wage. Other models of directed search generate wage dispersion by introducing

heterogeneity. For example, in Shi (2002a), firms are different in size (i.e., the number of employees); in

Shi (2002b) and Shimer (2001), the presence of high-skill workers induces partial sorting and generates

a wage differential among low-skill workers.
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the job upon application, denoted as employment probability. This choice makes
the wage offers in the BM model unsustainable as an equilibrium.

The equilibrium with directed search on the job is a wage ladder, which com-
prises of a finite number of wage levels (or rungs). Firms trade off a higher wage
for a greater probability of hiring a worker. In equilibrium, firms are indifferent
between posting any wage on the support of the wage distribution, since they all
yield the same expected surplus (or profit). Workers face a trade-off between a
higher wage and a lower employment probability. However, applicants are not
indifferent between applying to the different wages in equilibrium. Rather, an
applicant chooses to apply only to such jobs that lie one rung above his current
wage on the ladder, since these jobs provide him with the highest expected sur-
plus. Thus, workers choose optimally to climb the wage ladder one rung at a
time.

The wage ladder arises as an equilibrium because applicants’ current wages
affect their trade-off between employment probability and wage. The higher an
applicant’s current wage is, the lower the ex post surplus he can obtain from a given
wage, and so a given amount of the wage gain represents a larger proportional
increase in the expected surplus to such an applicant. Put differently, an applicant
with a high current wage cares more about the wage gain, and less about the
employment probability, than does an applicant with a low current wage. This
single-crossing property allows firms to separate the applicants by offering a high
wage with a low employment probability to those who have a high current wage,
and a low wage with a high employment probability to those who have a low
current wage. The separation produces the wage ladder in a stationary equilibrium.
Obviously, this wage ladder does not rely on any exogenous heterogeneity between
workers or jobs.

The wage ladder has the following strong implications: (i) Wage mobility is
limited endogenously, as a worker’s next move has only three possible outcomes—
to stay at the current wage, to move up the ladder by one rung, or to transit
into unemployment; (ii) the density of offer wages is strictly decreasing, which
induces the density of employed wages to be either decreasing or nonmonotonic
(numerical examples show that it is sharply decreasing); and (iii) the gap between
two adjacent rungs on the ladder becomes smaller and smaller as a worker climbs
up the ladder, and so the wage gain diminishes. These properties contrast sharply
with those in the BM model. Strongly restricted wage mobility accords well with
fact (3) listed in this introduction. The decreasing density of the wage distribution
is consistent with only one part of the empirical distribution (see fact (4)), but it
is the part that has been elusive in the BM model.

A decreasing density of offer wages is a necessary outcome of the wage ladder.
Because the wage ladder implies that workers employed at low wages do not apply
to very high wages, the source of applicants for high-wage recruiting firms is limited
endogenously. However, in order to make firms indifferent between recruiting
at different equilibrium wages, each high-wage firm must be more successful in
recruiting than each low-wage firm. This is possible, given the limited source of
applicants to a high wage, only if there are fewer firms competing against each
other at a high wage than at a low wage, that is, only if the density of offer wages is



DIRECTED SEARCH ON THE JOB 655

decreasing. When the density of offer wages is sufficiently decreasing, the density
of employed wages is also decreasing.

While the wage ladder generates the above novel properties, it retains the fol-
lowing realistic properties of the BM model. First, a worker’s quit rate decreases
with wage. Second, a worker’s wage increases, on average, with his employment
duration. Third, the average length of time an unemployed worker will take to
return to his previous wage increases with that wage.6

In Section 2 we will describe the economy with directed search on the job
and define an equilibrium. In Section 3 we will analyze agents’ trade-off between
the matching probability and wage, and argue that the equilibrium must be a
wage ladder. Section 4 will construct a candidate equilibrium by restricting the
deviations. Section 5 will remove such restrictions and find conditions under which
the candidate is indeed an equilibrium. We will present the analytical properties
of the equilibrium in Section 6 and provide numerical examples. Section 7 will
contrast our model with BM. Section 8 will conclude the article and the appendix
will collect the proofs.

2. A MODEL OF DIRECTED SEARCH ON THE JOB

2.1. The Labor Market and Job Search. Time is discrete. A labor market is
populated by a large (exogenous) number, L, of risk-neutral and infinitely lived
workers.7 All workers are identical. When employed, a worker supplies one unit of
labor and produces y > 0 units of output per period. When unemployed, a worker
receives a benefit, b. The unemployment rate u is endogenous. For convenience,
we refer to a worker’s wage as the worker’s type and call a worker at wage w a
w-worker. Also, we refer to b as an unemployed worker’s “wage” and write w0 =
b. There are also a large number of firms, determined endogenously by free entry,
each of which has one job to offer. All jobs are the same, and the cost of a vacancy
per period is C > 0. Time is discrete. Workers and firms discount future with the
discount factor 1/(1 + r), where r > 0.

The events in each period unfold as follows: At the beginning of the period, em-
ployed workers produce and obtain wages. Then, each employed worker receives
a shock that has three realizations. The first realization is exogenous separation
from the current job, which occurs with probability σ > 0 and sends the worker
into unemployment. The second realization is a job application opportunity, which
occurs with probability λ1 and enables the worker to apply to other jobs. The third
realization is an inactive state, in which the worker stays put in the current pe-
riod. Also, each unemployed worker receives a shock that gives the worker a job

6 Empirically, there exists a positive relationship between wage and firm size. Most directed search

models do not address the issue of firm size explicitly, since applicants apply to a job and not to a firm

(exceptions are Burdett et al., 2001; Shi, 2002a). However, our model can be reinterpreted as implying

the same relationship, given that expected queue sizes increase with wage.
7 The wage ladder is robust to the introduction of risk aversion. A worker’s application choice is

based on a trade-off between wage and the probability of obtaining the job. Even though risk-averse

workers would give relatively higher value to employment probability at all wage levels, the trade-off

would still depend on the current wage earned and thus a wage ladder would ensue.
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application opportunity with probability λ0 and keeps the worker inactive in the
current period with probability 1 − λ0.

Next, firms and workers play a two-stage recruiting game. In the first stage, each
potential firm chooses whether to incur the vacancy cost to become a recruiting
firm in the period. Each entering firm announces a job description, which consists
of a wage offer and a selection rule (described later). All recruiting firms announce
the job descriptions simultaneously. In the second stage, the workers who have
received application opportunities in the period observe all firms’ announcements
and choose which job opening to apply to.8 To apply, an applicant must incur a
small cost S > 0.9 An applicant can apply to only one job, but the application can
be mixed strategies over job openings. After receiving applicants, a firm selects
one according to the announced criterion. Then, the period ends. If a vacancy is
not filled in the period, the firm must incur the vacancy cost again next period in
order to recruit.

To emphasize the new results that will arise from the combination of directed
search and on-the-job search, we keep other aspects of our model as closely as
possible to the BM model. Thus, we maintain the following three auxiliary assump-
tions of the BM model. First, firms commit to what they post (for a relaxation of
this assumption, see Coles, 2001). Second, firms post wage levels rather than con-
tracts or mechanisms (for a relaxation of this assumption, see Julien et al., 2000;
Burdett and Coles, 2003).10 Third, a worker’s current employer does not match
outside offers, and so the worker always quits upon receiving a higher wage (for a
relaxation of this assumption, see Postel-Vinay and Robin, 2002). These auxiliary
assumptions also simplify the analysis considerably.

This labor market exhibits the following frictions that are familiar in previous
search models. First, agents cannot coordinate their decisions, which creates the
possibility of unmatched agents. Second, job application opportunities are not
abundant, in the sense that λ1 < 1 and λ0 < 1. This is a proxy for the cost of
gathering information about jobs. Third, each applicant can apply to only a small
number of jobs at a time, which is set to be one in our article. This is a proxy for
the constraint that an applicant can attend only one interview at a time.

The unique feature of our model is the combination of on-the-job search and
directed search. Employed workers search on the job after receiving application
opportunities. Search is directed because the applicants observe firms’ offers be-
fore the application. By choosing the job description, a firm can intentionally
affect how quickly it will get a match and what type of applicants it will attract. By
contract, previous models of on-the-job search, like the BM model, have assumed
undirected search in the sense that matching rates are exogenous to the agents.
On the other hand, previous models of directed search, such as Acemoglu and
Shimer (1999a) and Burdett et al. (2001), have excluded employed workers from

8 For directed search to occur, it is sufficient to assume that each applicant observes two offers that

are randomly drawn from all recruiting firms’ offers. However, the analysis is much more complicated.
9 The small cost S is needed to help the existence of an equilibrium in our model. We will discuss

the role of S in our model in Section 4.2 and how it affects the BM equilibrium in Section 7.
10 If each firm auctions the job by posting a reserve wage, as it does in Julien et al. (2000), then the

reserve wage serves the role similar to the posted wage in our model. Then an argument similar to

ours in Section 3.2 shows that the equilibrium must be a wage ladder.
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search. By allowing for λ1 �= λ0, we nest those previous directed search models as
a special case where λ1 = 0 < λ0.

Let wage levels lie in the interval, W = [w
¯
, y], where w

¯
∈ (−∞, y].11 Let N(·)

be the cumulative distribution function of workers over wages at the beginning
of each period, with n(·) being the density.12 Since we classify the unemployment
benefit w0 (=b) as a “wage” level, then N(w0) = u. The distributional density
of (employed) workers over wages in W\{b} is n(·)/(1 − u), which is also called
the employed wage density. Let V(·) be the cumulative distribution function of
vacancies over wages. The corresponding density function, denoted V(·), is called
the offer wage density. Let K be the total number of vacancies, which is endogenous,
and denote k = K/L. The number of vacancies at wage w is v(w)K.

We are interested in the equilibrium in a large market, i.e., one in which
L → ∞. However, to detail agents’ strategies, we will first analyze a market where
L is large and finite, and then take the limit L → ∞. The expected number of
applicants currently employed at w is λ1 n(w)L (or λ0uL if w = w0). Assume that
this number is an integer without loss of generality.

2.2. Strategies and Payoffs. Before describing the strategies, let us call a
w-worker who has just received a job application opportunity a w-applicant. To
unify the notation for employed and unemployed workers, let λ(w) = λ1 for all
w �= w0 and λ(w0) = λ0. Let Je(w) be the value function of a worker who is cur-
rently employed at wage w and Ju = Je(w0) the value function of an unemployed
worker. For firms, let Jf (w) be the value function of a firm that currently employs
a worker at w and Jv(w) be the value function of a vacancy recruiting at wage w.
Let J̄ v = maxw Jv(w). All these value functions are measured at the end of each
period.

Let us describe the applicants’ strategies first. A w′-applicant’s strategy is a
function p(·, w′) : W → [0, 1], where p(w, w′) is the probability with which the
applicant applies to each of the job openings at wage w.13 An implicit assumption
is that the applicant must assign equal probability to applying to all identical offers.
Also, all applicants of the same type use the same strategy. This requirement of
symmetry reflects the fact that it is difficult for agents to coordinate their actions
in a large market.

We normalize p as follows:

a(w, w′) = p(w, w′)λ(w′)n(w′)L(1)

Since (λ(w′), n(w′), L) are all exogenous to an individual agent, the above nor-
malization does not change the nature of p. Thus, a w′-applicant’s strategy can be
described alternatively by a function a(·, w′): W → �+. It is more convenient to

11 The lower bound w
¯

can be set as w
¯

= b − λ1[(y − b)/r − S]. An unemployed worker will never

accept wages below this w
¯

because the present value of accepting w
¯

and then facing the prospect of

getting a job that pays y forever is equal to the present value of staying unemployed forever, b/r.
12 Clearly, we do not presume that N(·) is a continuous distribution function. Throughout this

article, we expand the meaning of a “density function” to include the frequency function of a discrete

distribution, as well as the density of a continuous distribution.
13 There is no need to specify the dependence of p on the distribution of offer wages, because an

applicant can always set p(w, w′) = 0 for such wages w that are not offered.
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use a rather than p because p(w, w′) → 0 for all w in a symmetric equilibrium as
the market becomes large, but a(w, w′)/n(w′) remains strictly positive provided
that p(w, w′) > 0.

The variable a(w, w′) has another meaning in a symmetric equilibrium. When
all type w applicants use the same probability p(w′, w) to apply to each opening
at wage w′, the expected number of such applicants whom the opening receives
is equal to a(w′, w). For this reason, we also call a(w′, w) the queue length of
w-applicants for a job opening at w′. Despite this coincidence, the use of a(w′,
w) as a w-applicant’s strategy does not mean that an individual w-applicant can
choose the queue length or can influence other w-applicants’ strategies.

Denote A(w′) = {a(w, w′)}w∈W . A w′-applicant’s target set of wages is T(w′) =
{w : a(w, w′) > 0}. Evidently, for each w′-applicant, the probabilities p(w, w′) must
sum to one over w and over vacancies that offer these wages. This constraint can
be written as follows:

∑
w

[
a(w, w′)

n(w′)
v(w)

]
= λ(w′)

k

To specify an applicant’s strategy and payoff, let q(w) be the ex ante employment
probability offered to an applicant by a firm recruiting at wage w—“ex ante” in
the sense that the probability is computed before knowing the actual number and
composition of the applicants whom the firm will receive (see more discussion
later). Then, a w′-applicant’s payoff of applying for a firm posting w is the expected
surplus, q(w)[Je(w) − Je(w′)]. Let E(w′) be the maximum expected surplus that a
w′-applicant can get by applying to firms other than the one in the discussion. (The
dependence of E(w′) on the distribution of wage offers is suppressed.) Clearly,
a w′-applicant applies to the particular firm with probability one if the expected
surplus of such application exceeds E(w′), with any probability in [0, 1] if the
expected surplus is equal to E(w′), and with probability zero otherwise. Expressing
this result in terms of a(w, w′) and taking the limit L → ∞, we can characterize a
w′-applicant’s optimal strategy as follows:

a(w, w′)

⎧⎪⎨⎪⎩
=∞, if q(w)

[
Je(w) − Je(w′)

]
> E(w′)

∈ [0, ∞), if q(w)
[
Je(w) − Je(w′)

] = E(w′)
=0, otherwise

(2)

Note that the first case and the third case in the above equation will not arise
when (w, q(w)) is an equilibrium offer. If a(w, w′) = ∞, then each w′-applicant
who applies to a firm offering w is chosen with probability 0. The expected surplus
is 0 in this case and hence cannot be higher than E(w′), which contradicts the
condition required for a(w, w′) = ∞. On the other hand, if a(w, w′) = 0, then
the firm offering w does not attract any applicant, and so w is not an equilibrium
wage. Thus, for every equilibrium offer, the expected surplus of applying to a firm
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making such an offer must be equal to E(w′). For this reason, we call E(w′) the
market surplus for a w′-applicant.

When the size of the market approaches infinity, the effect of any individual
agent (worker or firm) on the market surplus vanishes.14 That is, each individual
agent in a large market takes E(w′) as given for all w′.

Now, let us turn to a recruiting firm’s strategies. A recruiting firm announces a job
description, which consists of a wage level w ∈ W and a criterion that determines
which applicant will get the job. This ex post selection criterion depends on the
profile (i.e., the composition) of the applicants whom the firm will receive. The
profile is stochastic in general, because the applicants can use mixed strategies to
apply to identical jobs. For each realization of the profile, the selection criterion
must specify the ex post employment probability with which each applicant is
selected. This is cumbersome but, fortunately, it is not necessary. Since all agents
are risk neutral, posting a job description is equivalent to posting a wage w and
an “ex ante” employment probability for each applicant, q (see Delacroix and
Shi, 2002, supplementary Appendix G, for a proof). This ex ante probability is
calculated by aggregating ex post employment probabilities in the ex post selection
criterion over all realizations of the profile of applicants whom the firm will receive.
We refer to q simply as the employment probability. Because firms recruiting at
different wages may offer different employment probabilities, we write q as q(w)
to index the employment probability by the wage which the firm offers.15

Therefore, a recruiting firm’s strategy is to announce a wage level w ∈ W and
an employment probability q(w) ∈ [0, 1] for every applicant. Let us now refer to
(w, q(w))w∈W as the profile of job descriptions.

The payoff to a firm posting (w, q(w)) is the expected surplus, h(w)[J f (w) − J̄ v],
where h(w) denotes the firm’s probability of successfully hiring a worker. The
only event in which the firm fails to hire is when the firm does not receive any
applicant at all. In the limit L → ∞, this probability is exp(− ∑

w′ a(w, w′)), where∑
w′ a(w, w′) is the total expected number of applicants for the firm.16 Thus, the

firm’s hiring probability in a large market is

h(w) = 1 − exp

[
−

∑
w′

a(w, w′)

]
(3)

14 This result is proven by Peters (2000), Cao and Shi (2000), and Burdett et al. (2001) in various

settings of directed search. A similar proof applies here.
15 In general, the ex ante employment probability offered by a firm posting wage w could differ

across the applicants’ types; that is, it could have the form q(w, w′), where w′ is the applicant’s type.

However, it is optimal for a firm to set q(w, w′) = q(w) for all w′ (see Delacroix and Shi, 2002, Appendix

G). This is because the firm’s probability of successfully hiring a worker is a concave function of the

expected number of applicants whom the firm will attract (see (3) later). By giving equal employment

probability to all applicants, the firm maximizes the hiring probability and, because all workers have

the same productivity, the strategy maximizes the expected surplus from recruiting. This implies that

it is not even necessary to assume that the applicant’s current wage is observed by firms.
16 The derivation for this formula starts with a finite market and then takes the limit L → ∞, using

the fact that (1 − p)1/p → e−1 when p → 0. We omit this derivation, because it is familiar in directed

search models (e.g., Peters, 1991; Burdett et al., 2001).
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Since each firm hires at most one worker, h(w) is also the expected number of
workers hired by the firm. As a result, the employment probability for each ap-
plicant who applies to the firm is

q(w) =
[

1 − exp

(
−

∑
w′

a(w, w′)

)] /∑
w′

a(w, w′)(4)

Thus, the more applicants the firm attracts, the more likely the firm will succeed
in filling the job, and the less likely each applicant will get the job. For this reason,
q and h have the following negative relationship:

q(w) = − h(w)

ln[1 − h(w)]
≡ �(h(w))(5)

Let �−1 be the inverse of �, so that h(w) = �−1(q(w)). Clearly, �−1(1) = 0.
That is, the only case in which a firm can guarantee employment for a potential
applicant is when the firm does not have any applicant at all. Similarly, �−1 (0) =
1.

A recruiting firm’s optimal offer (w, q(w)) solves the following problem:

(P) max �−1(q(w))[J f (w) − J̄v]

subject to

q(w)[Je(w) − Je(w′)] ≥ E(w′), for all w′ such that T(w′) � w(6)

The firm takes as given other firms’ decisions and the applicants’ market surpluses.
Since �−1 (1) = 0 and �−1 (0) = 1, offering q = 1 does not maximize the expected
profit and offering q = 0 violates the constraint.

The above formulation captures the key feature of directed search—the trade-
off between wage and the probability of forming a match. For a recruiting firm,
a higher wage offer reduces the ex post value of the job to the firm (Jf ), but it
attracts more applicants and hence increases the success of hiring. Similarly, for
an applicant, a higher wage offer yields a higher value of employment Je, but it
is more difficult to be obtained. The applicant applies only to those firms whose
offers maximize the applicant’s expected surplus, as the dual to (P) suggests.

The trade-off between the matching probability and wage is “smooth,” as in
all directed search models. A marginally higher wage offer will not induce the
applicants to increase the probability of application to that offer by a discrete
amount. This is because all the applicants will observe the increase in the wage
offer before applying to the job. If they all responded to the slightly higher offer by
a discrete increase in the application probability, then the employment probability
for each of them would be close to zero, which would not be optimal for the
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applicants. Such smoothness will enable us to use the first-order conditions to
analyze the equilibrium.17

Now, we specify the value functions. Recall that the value functions are mea-
sured at the end of each period. They satisfy the following Bellman equations:

Jv(w) = 1

1 + r
{−C + h(w)J f (w) + [1 − h(w)] J̄ v}(7)

r J f (w) = (y − w) − [σ + ρ(w)][J f (w) − J̄ v](8)

r Je(w) =

⎡⎢⎢⎢⎣
w − σ [Je(w) − Ju] − χ

(∑
w′

a(w′, w)

)
λ1S

+ k
n(w)

∑
w′

q(w′)[Je(w′) − Je(w)]a(w′, w)v(w′)

⎤⎥⎥⎥⎦(9)

r Ju = b − λ0S + k
u

∑
w′

q(w′)[Je(w′) − Ju]a(w′, b)v(w′)(10)

The function χ(·) in (9) is an indicator function, with χ(�a) = 1 if �a > 0 and χ

(�a) = 0 if �a = 0. The function ρ(w) is the probability with which a w-worker
quits his current job for another job, which is given as follows:

ρ(w) = λ(w)
∑
w′

q(w′)p(w′, w)v(w′)K = k
∑
w′

q(w′)v(w′)
a(w′, w)

n(w)
(11)

To explain the above Bellman equations, consider (9) for example. This equation
equates the permanent income of a worker employed at wage w, rJe(w), to the
expected “cash flow” to such employment in the next period. The cash flow consists
of the wage, the loss in value in the event of exogenous separation, and the expected
gain from searching on the job. The gain from searching on the job is the difference
between the last two terms in (9). If this difference is nonpositive, the worker will
choose �a = 0, in which case the last two terms in the equation are zero. By
construction, experiencing exogenous separation and receiving a job application
opportunity are two distinct realizations of the same shock to an employed worker.

The value function Je(w) must be strictly increasing for all w �= w0 and w < y. To
see this, consider two workers who are employed at w′ and w′′, respectively, with
w′′ < w′ < y. The worker employed at w′ receives a job application opportunity as
often as does the worker employed at the lower wage w′′, and he can apply to all
job openings that the worker at w′′ can. Thus, the expected payoff to the w′-worker
in the future application is at least as high as that to the w′′-worker. In addition, a

17 The BM model does not have such smoothness. There, if a mass of workers are employed at

a wage level, then a firm can increase expected profit by a discrete amount by increasing the offer

slightly above that wage. This is because all applicants at that wage will be exogenously matched to

the deviator with a positive probability.
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w′-worker gets a higher wage from his current job than a w′′-worker does. Thus,
Je(w′) > Je(w′′). The only exception arises when we use Je(w0) to stand for Ju. If
λ0 < λ1, employment gives a worker a better access to higher wages in the future
than unemployment. In this case, it is possible that Je(w′) > Je(w0) for some w′ <
w0.

As explained before, directed search implies that firms and workers have a
smooth trade-off between the matching probability and wage. Thus, we maintain
that the value functions are continuous. Again, the only exception is Je(w0) when
λ0 �= λ1.

2.3. Definition of Equilibrium. The set of equilibrium wage offers is � ≡
{w ∈ W : v(w) > 0}. Define w1 = inf(�) and wM = sup(�). Let �0 = � ∪ {w0}
and call �0 the extended support of equilibrium wages. Clearly, the cumulative
distribution of wages over �0 is N(·), the density of employed workers over � is
n(·)/(1 − u), and the density of vacancies (or offer wages) over � is v(·).

DEFINITION 1. A symmetric Nash equilibrium in the labor market consists of the
aggregate characteristics (�, N(·), V(·), k), recruiting firms’ offers (w, q(w))w∈�,
and the applicants’ strategies (A(w))w∈�0

, where A(w) = (a(w′, w))w′∈�, such that
the following requirements are met: (i) Given the aggregate characteristics and
given that other (current and future) recruiting firms post (w, q(w))w∈�, an in-
dividual firm’s optimal strategy is to post (w, q(w)) with w ∈ �; (ii) given the
vacancy distribution over (w, q(w))w∈� and the aggregate characteristics, each w-
applicant’s optimal strategy is A(w); (iii) the strategies are symmetric within each
type; (iv) there is free entry of firms: Jv(w) = J̄ v = 0 for every recruiting firm; and
(v) the aggregate characteristics are stationary.

Note that part (i) of the definition requires each firm to take as given that other
firms post (w, q(w))w∈� in the future, as well as in the current period. That is, when
a firm deviates to a wage w′ /∈ �, it views that other firms in the future will not post
wages outside � to attract its prospect worker. Thus, the equilibrium defined above
may not be Markovian. In Section G of the Appendix, we examine the Markov
perfect equilibrium and discuss the difficulties of analytically characterizing it. We
also provide a numerical example to show that the Nash equilibrium in our model
can be very close to the Markov equilibrium.

As required by the equilibrium, we will set Jv(w) = J̄ v = 0 in the remainder of
this article.

3. CONFIGURATION OF THE EQUILIBRIUM

In this section, we will first show that an equilibrium must feature the separation
of the applicants by their current wages. Then we will argue that an equilibrium
must be a ladder.

3.1. Separation of Applicants by Their Current Wages. To search for the
equilibrium configuration, we start with an applicant’s trade-off between the
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employment probability and wage. This trade-off is summarized by the appli-
cant’s indifference curve. For an applicant who is currently employed at wage w′,
the indifference curve is the equality form of (6), which can be rewritten as follows:

q(w) = E(w′)
Je(w) − Je(w′)

all w′ such that a(w, w′) > 0(12)

Because the value of employment is a strictly increasing function of wage, as we
explained before, this is a negative relationship between the employment prob-
ability and wage. Thus, a low wage must be compensated by a high employment
probability in order to induce an applicant to apply.

An applicant’s current wage affects the trade-off between the employment prob-
ability and wage. In fact, the indifference curves of two different types of appli-
cants have the single-crossing property. To see this, we calculate the slope of a
w′-applicant’s indifference curve at (w∗, q∗) as follows:

− dq
dw

= q∗ J ′
e(w∗)

Je(w∗) − Je(w′)

As we argued before, Je(·) is an increasing function, and so J ′
e(w∗) > 0. Thus, if

an offer (w∗, q∗) lies on both indifference curves of type wi and type wj applicants,
with wj > wi, then

− dq
dw

∣∣∣∣
w′=w j

> − dq
dw

∣∣∣∣
w′=wi

at (w, q) = (w∗, q∗)

The single-crossing property reflects the difference between the two applicants’
willingness to sacrifice the employment probability for a wage gain. The higher an
applicant’s current wage, the lower the ex post surplus he can obtain from a given
wage. So, a given amount of the wage gain represents a larger proportional increase
in the expected surplus to a high-type applicant than to a low-type applicant. Put
differently, a high-type applicant cares more about the wage level that an offer
provides, and less about the employment probability, than a low-type applicant
does.

The single-crossing property implies that the equilibrium will feature separation
of applicants by their types, as stated in the following lemma (see Section A of the
Appendix for a proof).

LEMMA 1. If there is an equilibrium, then each equilibrium wage attracts at most
one type of applicant. Precisely, a(w∗, wi)a(w∗, wj) = 0 for all wi, wj, w

∗ ∈ �0 with
wj > wi.

Figure 1 illustrates Lemma 1. Two indifference curves are drawn, one for the
applicant of type w′ = wi and the other for w′ = wj > wi. The single-crossing prop-
erty implies that the indifference curve of the high-wage applicant (wj-applicant)
crosses that of the low-wage applicant from above (at point A). We also draw the
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  q
 indifference curve
  for worker wj (wj>wi)

direction of higher
expected utility

          A    indifference curve
    for worker wi

        B
direction of
higher expected
surplus for firm iso-profit curve

   w

FIGURE 1

INDIFFERENCE CURVES IN (w, f )-SPACE

iso-profit curve of the recruiting firm, which summarizes different combinations
of (w, q) that yield the same expected surplus to the recruiting firm. If the firm
attracts both types of applicants, the firm’s offer must be at the intersection of
these two indifference curves. However, this offer does not maximize the firm’s
expected surplus. (In the situation depicted in Figure 1, the offer B yields higher
expected surplus to the firm.)

Lemma 1 implies that the BM equilibrium cannot be an equilibrium when on-
the-job search is directed, as we will show in the next subsection.

3.2. The Equilibrium Must Be a Ladder. To see what structure the equilib-
rium has, we assume that the recruiting firm’s decision problem (P) has a unique
solution that is continuous in the applicant’s current wage.18 Then, the dual of (P)
also has a unique continuous solution. That is, for each type w of applicants, the
target set of wages T(w) is singleton and continuous in w. Use T(w) to refer to
this single target wage level rather than the set. Then, the equilibrium must be a
wage ladder with a finite number of rungs. The argument proceeds as follows.

First, an employed applicant applies only to wages higher than his current wage.
That is, T(w) > w for all w �= w0, provided that T(w) is nonempty. This is because

18 When the solution to (P) is not unique but finite, the number of equilibrium wage levels is still

finite but there will be multiple ladders. The difficulty to establish the uniqueness and continuity of the

solution lies in the fact that the properties of the solution to (P) depend on the properties of the value

functions {Je(w), Jf (w)}. But, in turn, the properties of these functions depend on whether (P) has a

unique solution. We cannot verify such uniqueness analytically, but the solution was indeed unique in

all numerical examples examined.
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the expected surplus of application is nonpositive if an employed worker applies
to a wage equal to or below his current wage.

The same result holds for an unemployed applicant if λ0 ≥ λ1. However, if
λ0 < λ1, then an employed worker receives job opportunities more often than an
unemployed worker. In this case, an unemployed worker may be willing to accept
a wage lower than the unemployment benefit so as to gain a better access to higher
wages. Thus, T(w0) < w0 is possible only if λ0 < λ1.

Second, starting from any equilibrium wage w (including w0), the path of future
equilibrium wages contains only a finite number of wage levels. This path is the

sequence (Ti(w))
j
i=1, where Ti(w) = Ti−1(T(w)) for all i. The number j is finite

because there are costs for firms to maintain a vacancy and for workers to apply
for jobs. The difference between any two adjacent wage levels, Ti(w) − Ti−1 (w),
must be bounded below by a strictly positive number in order to cover the fixed
application cost. In a finite number of steps, the ascending wage sequence will
reach a level at which recruiting yields an expected surplus below the vacancy
cost.

Third, every employed wage in the equilibrium can be reached in a finite number
of steps from w0. That is, for every w ∈ �, there exists a nonnegative integer j such
that w = Tj(w0). To see this, suppose that an equilibrium wage w ∈ � cannot be
reached from w0. Then we can trace backward to find the source of this wage,
using the sequence {T−i (w)}i≥0, where T−1 is the inverse function of T. Note that
T−i (w) is strictly decreasing in i for any given w and the difference [T−(i−1) ×
(w) − T−i (w)] is bounded below by a strictly positive amount for any i ≥ 1. Thus,
the descending sequence {T−i (w)}i≥0 reaches a minimum in a finite number of
steps, say m. Because w cannot be reached from w0 in a finite number of steps by
the supposition, T−m(w) �= w0 and T−m(w) cannot be reached from w0 in a finite
number of steps. In fact, T−m (w) cannot be reached from w0 at all because, if it can
ever be reached fromw0, the number of steps needed is finite by the previous result.
At the wage T−m(w), there is an outflow of workers because of endogenous and
exogenous separation, but there is no inflow of workers. The measure of workers
employed at this wage must be zero in the stationary equilibrium.

Therefore, the equilibrium is a wage ladder that has a finite number of rungs. An
applicant applies only to the wage one rung above his current wage. This happens
not because the applicant does not observe job openings at higher wages as in
the BM model, but rather because it is optimal to climb the ladder one rung at a
time. The job openings one level above the applicant’s current wage on the ladder
provides a higher employment probability than jobs at higher wages and, as such,
they provide a best trade-off between the employment probability and wage.

The above argument shows that the BM equilibrium cannot be an equilibrium
with directed search. It is important to see how the above argument breaks down
in the BM framework. There, workers do not choose which wage to apply to,
because search is assumed to be undirected. Rather, each applicant is exogenously
matched with job openings all with positive probability, despite the fact that a high-
wage offer yields a higher expected surplus than a low-wage offer. As a result, a
recruiting firm receives applicants at all wage levels with positive probability,
irrespective of the wage offer. This feature of the BM model implies that if w1 is
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the lowest equilibrium wage and if w2 (>w1) is another equilibrium wage, then
any wage offer w′ ∈ (w1, w2) will receive some unemployed applicants who will
accept the offer. This property in the BM model supports a continuum of wages as
equilibrium wages. Directed search destroys this property by allowing applicants
to choose which wage offer to apply to. In this case, only the wages that are optimal
to the applicants will receive applications with positive probability. In the above
example, wages in (w1, w2) will not attract any applicants and hence they cannot
be equilibrium wages. In Section 7 we will discuss in more detail the differences
between our model and the BM model.

3.3. Simplifying the Notation and Imposing the Restriction Off the Equilib-
rium. Each equilibrium wage on the ladder is necessarily a mass point of the
wage distribution. Let the set of equilibrium wages be � = (wi)

M
i=1, where wi =

Ti(w0) and M is the (finite) number of rungs on the ladder. We depict the wage
ladder in Figure 2, where the arrows indicate the directions in which workers apply
for jobs. Exogenous separation is not depicted here. As discussed before, w1 <

w0 is possible only when λ0 < λ1. Moreover, the ladder collapses into one rung if
on-the-job is shut down, i.e., if λ1 = 0.

With the ladder structure, we can simplify the notation. For each wi ∈ �, denote
ni = n(wi), vi = v(wi) with n0 = u, and ai = a(wi, wi−1). Writing q and h as functions
of a, rather than of w, we transform (3) and (4) as follows:

hi = h(ai ) ≡ 1 − e−ai , qi = q(ai ) ≡ (1 − e−ai )/ai(13)

Clearly, h′(a) > 0 and q′(a) < 0. The probability with which a worker at wi−1

endogenously separates from the job is ρi−1 = λ1qi for i ≥ 2 and ρ0 = λ0q1.
Moreover, because p(wi, wi−1) = 1/(vi K) for i ≥ 1, (1) becomes

vi = λ1ni−1/(ai k) for i ≥ 2, and v1 = λ0u/(a1k)(14)

posted wages
w1 w2 wi-1 wi       wi+1        wM

   …..   ….

w0=b w1 w2 wi-1 wi       wi+1        wM

employed wages

FIGURE 2

THE WAGE LADDER
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Now that the equilibrium must be a wage ladder, we still need to show that such
an equilibrium exists. This is not an easy task. With on-the-job search, an appli-
cant for a job cares about what opportunities the job will generate in the future.
Thus, current applicants’ and recruiting firms’ strategies depend on the strategies
of future recruiting firms, which are an equilibrium object. We will explore the
recursive structure of the wage ladder to find an equilibrium and to characterize
the analytical properties of the equilibrium.

In any attempt to establish an equilibrium, we must check deviations from
equilibrium strategies. Since one firm’s deviation sends its prospective employee
off the equilibrium path, it is necessary to specify what firms would do to the
applicants whose wages happen to lie outside �.19 Because all workers have the
same productivity, it is natural to maintain the following restriction on beliefs off
the equilibrium path:

Restriction (Off-eqm): The employment probabilities satisfy q(w, w′) = q(w) for all

w′, w ∈ W , including w′ /∈ �0 and w /∈ �.

4. A CANDIDATE EQUILIBRIUM

In this section, we construct a candidate equilibrium by examining a restricted
set of deviations. Suppose that all (current and future) recruiting firms, except
one, post offers in the set (wi, qi)

M
i=1. The deviating firm offers (wd, qd), where

wd /∈ �. If the firm successfully hires a worker, it pays the wage wd until the worker
separates; if the firm fails to hire a worker, the firm returns to the equilibrium
recruiting strategy next period. In the construction of the candidate equilibrium,
we restrict the deviation as follows:

Temporary Restriction (One-rung): There exists w∗ ∈ � such that wd attracts the same

type of applicants as does w∗ and a worker who gets wd will apply to the same wage in

the future as will a worker who gets w∗, with the only exceptions being (i) wd > wM and

wd attracts only wM-applicants, and (ii) wd < w1 and the worker who gets wd will apply

to w1 in the next application.

This temporary restriction makes the deviation comparable to the equilibrium
offer (w∗, q(w∗)). (Try depicting the deviation in Figure 2.) After constructing the
candidate, we will eliminate this restriction in Section 5 and find conditions under
which the candidate is indeed an equilibrium.

4.1. Wages Lower Than the Highest Level. Examine the equilibrium wage
wi ∈ �, where 1 ≤ i ≤ M − 1. Consider an individual firm’s deviation wd ∈ (wi−1,
wi+1). Since the purpose of examining this deviation is to derive conditions on

19 If the belief off the equilibrium path is unrestricted, an arbitrary set of wages may be supported as

an equilibrium. For example, consider an arbitrary set of wages � and suppose that for each wage wi in

this set, the firms recruiting at wi give positive employment probability only to wi−1-applicants. Then,

even a slight deviation from wi−1 will reduce the recruit’s future employment probability for higher

wages to zero. Knowing this, workers may not apply to the deviating firm at all, and this successfully

supports � as an equilibrium.



668 DELACROIX AND SHI

(wi, qi), we take wi to serve the role of w∗ in the restriction (One-rung); that is,
wd attracts only wi−1-applicants and a worker getting wd will apply to w+1 in the
next application.20

Let ad be the queue length of the applicants at wagewi−1 whomwd attracts. Then,
the deviating firm’s hiring probability is h(ad) and each applicant’s employment
probability is q(ad), where the functions h(a) and q(a) are defined by (13). After
an applicant gets the job, his future quit rate is λ1qi+1 (note that we are invoking
the restriction (Off-eqm) here). If the deviating firm successfully hires a worker,
the firm’s and the employee’s value functions are as follows, which are adapted
from (8) and (9):

J f (wd) = y − wd

r + σ + λ1qi+1

(15)

Je(wd) = wd + σ Ju − λ1S + λ1qi+1 Je(wi+1)

r + σ + λ1qi+1

(16)

Because the deviating firm takes future recruiting firms’ strategies as given, it takes
qi+1 and Je(wi+1) in the above formulas as given.

It is more convenient to formulate the deviator’s choices as (wd, ad), rather than
(wd, qd). The optimal choices (wd, ad) solve the following problem similar to (P):

(Pd) max h(ad)J f (wd)

s.t. q(ad)
[
Je(wd) − Je(wi−1)

] = E(wi−1)

For wi to be an equilibrium wage, the solution to (Pd) must be (wd, ad) = (wi, ai).
The first-order conditions and the constraint of (Pd) yield

Je(wi ) − Je(wi−1) = ai

eai − 1 − ai
J f (wi )

qi [Je(wi ) − Je(wi−1)] = E(wi−1)

where Jf (wi) and Je(wi) obey (15) and (16), respectively, with wi replacing wd.
Note that the applicant’s surplus after getting the job, [Je(wi) − Je(wi−1)], is a
share ai/(eai − 1) of the total surplus. This share decreases endogenously with the
queue length ai.

In addition, free entry of firms drives the value of a vacancy to zero. That is,

C
hi

= J f (wi ) = y − wi

r + σ + λ1qi+1

(17)

20 The same analysis applies to two other possible cases, with relabeling. The first is that wd ∈ (wi,

wi+1) and wi+1 serves the role of w∗ in the restriction (One-rung). In this case, treat wd as a downward

deviation from wi+1 rather than a deviation from wi. The second case is that wd ∈ (wi−1, wi) and wi−1

serves the role of w∗ in the restriction (One-rung). In this case, treat wd as an upward deviation from

wi−1.
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With this condition, we rewrite the first-order conditions of (Pd) as follows:

Je(wi ) − Je(wi−1) = C/ fi(18)

E(wi−1) = qi [Je(wi ) − Je(wi−1)] = Cqi/ fi(19)

where

fi = f (ai ) ≡ q(ai ) (eai − 1 − ai )(20)

Finally, for wi−1-applicants to incur the fixed cost of application, the market
surplus E(wi−1) must be greater than or equal to S. With (19), this requirement
becomes

ai ≤ ā, where eā − 1 − ā = C/S(21)

4.2. Highest Wage in Equilibrium. Consider a deviation wd ∈ (wM, y]. This
deviation may attract the applicants at wM−1, in which case the deviation satisfies
the restriction (One-rung). For this deviation to be not profitable, the highest wage
wM must satisfy (17)–(21) for i = M, with qM+1 = 0.

The deviation may also attract wM-applicants, which no equilibrium wage does.
(This is the exception (i) in restriction (One-rung).) To ensure that such a deviation
is not profitable, we need an additional condition. Facing an opening wd > wM, the
applicants employed at wM will apply to it as long as the expected surplus from
the application is equal to the fixed cost of application. Thus, the queue length of
applicants for the deviating firm, ad, satisfies

q(ad)
[
Je(wd) − Je(wM)

] = S(22)

where Je(w) = (w +σ Ju)/(r +σ ) for both w =wd and wM. The deviator’s expected
surplus is h(ad)Jf (wd), where Jf (wd) = (y − wd)/(r + σ ). This deviation is not
profitable if and only if the deviator’s maximum expected surplus is less than the
vacancy cost C. Solving the deviator’s maximization problem subject to (22), we
can write this requirement as

wM > y − (r + σ )Seā(23)

where ā is defined in (21). Clearly, there is any wM ≤ y satisfying the condition
only if S > 0.

To explain intuitively why S > 0 is needed for an equilibrium, suppose S = 0 and
wM < y. A firm that deviates to a slightly higher wage wM + ε (ε > 0) can always
attract wM-applicants, and so it can succeed in hiring almost surely. Relative to
posting wM, the deviation gives the firm a slightly lower ex post surplus but a
discrete increase in the hiring probability. Thus, the deviation is profitable. To
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prevent such profitable deviations, wM must be equal to or greater than y, which
yields negative expected net profit, after the vacancy cost is deducted.

For future use, it is useful to express (21) and (23) for i = M as requirements on
the hiring probability at wage wM, as follows:21

1 − (1 + ā)e−ā < hM ≤ 1 − e−ā(24)

4.3. Recursive Characterization of the Candidate Equilibrium. The condi-
tions in the two previous subsections provide a recursive characterization of the
candidate equilibrium. Pick up a number hM that satisfies (24). Then, qM+1 = 0.
Moreover, setting i = M and wd = wM in (16) and (17), we get

aM = − ln(1 − hM), qM = hM/aM

wM = y − (r + σ )C/hM, Je(wM) = (wM + σ Ju)/(r + σ )

Starting from this highest rung of the wage ladder, we can recursively compute
the characteristics at lower rungs, as stated in the following proposition (see
Section B of the Appendix for a proof).

PROPOSITION 1. Given hM, qM− j+1, wM− j , and Je(wM− j ), the following condi-
tions hold in equilibrium for j = 0, 1, 2, . . . , M − 2:

hM− j = (r + σ + λ1qM− j+1)C
y − wM− j

(25)

aM− j = − ln(1 − hM− j ), qM− j = hM− j/aM− j(26)

wM− j−1 = wM + λ1S − λ1qM− j C
fM− j

− (r + σ )C
j∑

t=0

1

fM−t
(27)

Je(wM− j−1) = σ Ju + wM

r + σ
− C

j∑
t=0

1

fM−t
(28)

In addition, (25) and (26) hold for j = M − 1, and Ju satisfies

Ju = 1

r

[
b − λ0S + λ0C

q1

f1

]
(29)

ASSUMPTION 1. Define ā by (21). Assume that the following conditions hold

b ≤ y + λ0S − C
[

(r + σ ) ea + λ0

ea − 1 − a

]
a=ā−ln(1+ā)

(30)

21 For i = M, (21) is equivalent to hM ≤ h(ā) = 1 − e−ā . To rewrite (23), note that hMJf (wM) = C
in equilibrium and Jf (wM) = (y − wM)/(r + σ ).



DIRECTED SEARCH ON THE JOB 671

(r + σ )/λ1 > f (ā)/ā(31)

The condition (30) ensures that there is at least one wage level that yields
a higher present value to the workers than unemployment, whereas (31) is a
technical condition necessary for exploring Proposition 1.

The following proposition describes some important properties of the computed
sequence (a, q, h) (see Section C of the Appendix for a proof).

PROPOSITION 2. For any given hM that satisfies (24), the sequence constructed in
Proposition 1 has the following monotonicity properties for all 2 ≤ i ≤ M:

ai−1 < ai ≤ ā, hi−1 < hi , qi−1 > qi(32)

(r + σ )/λ1 > f (ai−1)/ai−1(33)

ai−1 > ai − ln(1 + ai )(34)

dai/dhM > 0, dwi/dhM > 0(35)

The recursive method in Proposition 1 generates a sequence (hi, ai, qi, wi,
Je(wi))M

i=1 for each given hM. For the sequence to be an equilibrium, the values of
M and hM must be such that Je(w1) satisfies (18) for i = 1. That is, 
 = 0, where

≡ Je(w1) − Ju − C/f 1. Setting j = M− 2 in (28) to obtain Je(w1) and substituting
(29) for Ju, we write 
 as


(M, hM) = wM − b + λ0S
r + σ

− Cλ0q1

(r + σ ) f1

− C
M−1∑
t=0

1

fM−t
(36)

Note that 
 does not depend on Ju directly because the computed a sequence and
the number wM do not (see Proposition 1). Solving (M, hM) involves iterations
on 
 until 
(M, hM) = 0. We describe the iteration procedure in Section B of the
Appendix and prove the following proposition.

PROPOSITION 3. Fix hM at any value h∗ that satisfies (24) and compute the a
sequence according to Proposition 1. Then, there exists an integer M(h∗) ≥ 1 such
that 
(M′, h∗) ≥ 0 for all M′ ≤ M(h∗) and 
(M′, h∗) < 0 for all M′ ≥ M(h∗) + 1.
Let M∗∗ = M(1 − (1 + ā)e−ā) + 1. Then, there exists an equilibrium value of hM if
and only if


(M∗∗, 1 − e−ā) ≥ 0(37)

Under this condition, there exist hL and hH , which possibly coincide with each other,
such that all equilibrium values of hM lie in [hL, hH]. The equilibrium value of M
is either M∗∗ or M∗∗ + 1.

With the equilibrium values of (h, a, q, M), we can calculate the distributions of
workers and vacancies. First, because the equilibrium is stationary, the measure
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of workers who separate from wi must be equal to the measure of workers newly
recruited at wage wi. That is,

(σ + λ1qi+1)ni = λ1ni−1qi , for all 2 ≤ i ≤ M

(σ + λ1q2)n1 = λ0uq1 = σ (1 − u), and du = 1 −
M∑

i=1

ni

(38)

These equations solve for u and (ni)
M
i=1. Second, we can solve the distribution of

vacancies (vi)
M
i=1 from (14) and the requirement

∑M
i=1 vi = 1. These equations also

solve for k—the ratio of vacancies to workers. This completes the construction of
the candidate equilibrium.

5. THE WAGE LADDER IS AN EQUILIBRIUM

We now find conditions under which the candidate equilibrium is indeed an
equilibrium. This will be done in two steps. First, we consider only equilibrium
wages and verify that workers indeed climb the ladder one rung at a time. This
requirement is necessary for the value functions used in the construction of the
candidate equilibrium to be valid. Second, we eliminate the restriction (One-
rung) imposed in Section 4 and show that the candidate equilibrium can survive
all deviations. The restriction (Off-eqm) is maintained throughout. Whenever
possible, we suppress the index i = M − j and use the subscript ±t to stand for
M− j ± t . The readers who are more interested in the properties of the equilibrium
can skip this section and go directly to Section 6.

5.1. Workers Climb the Ladder One Rung at a Time. In this subsection, we
confine wages to the equilibrium set � and find the one condition under which
applicants employed at wage w−1 indeed apply only to job openings at wage w,
for any wage w−1 on the ladder. We proceed as follows: We must verify that a
w−1-applicant does not have any incentive to apply to any wage strictly greater
than w on the wage ladder. That is potentially a large number of deviations to
check. The reader can refer to Table 2 to see how we can greatly simplify that
task. Take a wi-applicant, i ∈ {0, 1, . . . , M − 2}. To verify that he prefers to apply
to wi+1 rather than any other wage on �, we verify that he prefers to apply to
wi+ j than to wi+ j+1 for j ∈ {1, 2, . . . , M − i − 1}. If all these conditions are met,
workers only apply to the next wage on the ladder. The conditions are represented
by the upper triangle in Table 2. We first derive Lemma 2 to show that it is enough
to just check the conditions given by the diagonal of that triangle—the terms in
brackets. If a condition on a diagonal term is satisfied, so are all the conditions
in the corresponding column. Then we derive Lemma 3 to show that it is even
enough to only check the very last condition on that diagonal—the underlined
term.22 This implies that a single condition, namely that a wM−2

-applicant prefers

22 Lemma 4 follows directly from Lemma 3.
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TABLE 2

POSSIBLE DEVIATIONS WITHIN THE EQUILIBRIUM SET �

Type Prefers to Apply to wi Than to wj : wi/wj

b [w1/w2] w2/w3 w3/w4 w4/w5 · · · · · · wM−1/wM

w1 [w2/w3] w3/w4 w4/w5 · · · · · · wM−1/wM

w2 [w3/w4] w4/w5 · · · · · · wM−1/wM

w3 [w4/w5] · · · · · · wM−1/wM
.
.
.

. . .
. . .

.

.

.

.

.

.
. . .

.

.

.

wM−2 [wM−1/wM]

to apply to wage wM−1 rather than to wM is enough to ensure that no applicant
will want to apply anywhere else than on the next rung of the ladder.

For the strategy of applying to the next rung on the wage ladder to be optimal,
the expected surplus that a w−1-applicant obtains from applying to wage w must
be larger than or equal to that from applying to other higher wages. That is, for all
j ∈ {1, 2, . . . , M − 1} and all t ∈ {1, 2, . . . , j}, the following inequality must hold

qM− j [Je(wM− j ) − Je(wM− j−1)] ≥ qM− j+t [Je(wM− j+t ) − Je(wM− j−1)](39)

For a fixed wage w on the ladder, which applicants have the strongest incentive
to leap over w? The applicants currently employed one level below w do. To leap
over w for higher wages, the applicant must care about the wage gain sufficiently
more than about the employment probability. Because the applicants’ indifference
curves have the single-crossing property, the applicants at wage w−1 care about
the wage increase the most among all applicants employed below w on the ladder.
Thus, if the applicants employed at wage w−1 do not leap over w, then neither
do applicants employed at wages below w−1. We formalize this intuition in the
following lemma (see Section A of the Appendix for a proof).

LEMMA 2. For all j ∈ {1, 2, . . . , M − 1} and all t ≥ 2, if the w−1-applicants prefer
applying to a job at wage w to a job at w+1, then so do the w−t -applicants.

With the above lemma, the applicants indeed climb the wage ladder one rung
at a time if the applicants on each rung do not leap over the next rung. That is, for
each j ∈ {1, 2, . . . , M − 1}, it suffices to verify (39) for only t = 1. Using (18), we
can rewrite (39) for t = 1 as

q(a)

q(a+1)
− 1 − f (a)

f (a+1)
≥ 0(40)

This contains (M − 1) inequality conditions in total.
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The single-crossing property suggests that we might be able to further reduce
the number of inequality conditions to one. Because an applicant’s preference for
a wage gain increases with the applicant’s current wage, the incentive to leap over
the next rung on the ladder strengthens with the applicant’s current wage. For all
workers to climb the ladder one rung at a time, it suffices to find the condition
under which the applicants at wage wM−2 do not leap over the next rung.

To formalize the above intuition, let us define φ(a+1) as the solution for a to
the equality form of (40) under given a+1. Because the left-hand side of (40) is a
decreasing function of a, the inequality is equivalent to a ≤ φ(a+1). We prove the
following lemma in Section D of the Appendix:

LEMMA 3. The function φ(·) exists, is unique for each a+1, and has the following
properties: (i) φ′ > 0; (ii) a+1 > φ(a+1) > a+1 − ln (1 + a+1); and (iii) if a ≤
φ(a+1), then a−1 < φ(a).

Property (iii) captures our intuition. Thus, to verify (40) for all j ∈ {1, 2, . . . ,
M − 1}, it suffices to verify it for j = 1. For j = 1, Equation (40) becomes
aM−1 ≤ φ (aM), which is equivalent to hM−1 ≤ h(φ (aM)). Use (C.2) in Section
C of the Appendix to substitute hM−1; we can express hM−1 ≤ h(φ (aM)) as the
condition in the following lemma.23

LEMMA 4. Given the wage levels computed in Proposition 1, it is optimal for
applicants to apply only to the next wage level, rather than higher ones, if and only
if

r + σ

λ1

≥
(

qM

h(φ(aM))
− qM

fM
+ S

C

) /(
1

hM
+ 1

fM
− 1

h(φ(aM))

)
(41)

5.2. Eliminating Restriction (One-rung). Now we reconsider the deviation
examined in Section 4 but eliminate the restriction (One-rung). It suffices to con-
sider a deviation wd ∈ (w−1, w). This deviation can violate the restriction (One-
rung) either in the type of applicants it attracts and/or the wage to which the
worker who gets wd will apply in the future. Table 3 summarizes all such devia-
tions. The cells marked with × indicate that the corresponding deviations conform
with the restriction (One-rung).

23 Using (C.2) with j = 0, we can write the condition hM−1 ≤ h(φ(aM)) as

0 ≤ r + σ

λ1

(
1

hM
+ 1

fM
− 1

h(φ(aM))

)
− qM

(
1

h(φ(aM))
− 1

fM

)
− S

C

Note that 1
h + 1

f = [1 − (1 + a)e−a]−1. So, the fact φ(a) > a − ln (1 + a) implies 1
h(aM)

+
1

f (aM)
> 1

h(φ(aM))
. Thus, we can rewrite the above condition as (41). Moreover, if the right-hand side

of (41) is an increasing function of aM (which seems true from numerical examples), then we can

obtain a sufficient condition for (41) by replacing aM with ā and C/S with (eā − 1 − ā).
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TABLE 3

DEVIATION wd
THAT VIOLATES RESTRICTION (ONE-RUNG)

Destination of Prospective Workers at wd

Source of Applicants to wd w w+1 w+t (t ≥ 2)

w−1 I × III

w−2 × II III

w−t (t ≥ 3) IV IV III

The following lemma shows that type III deviations are not profitable, whereas
type IV deviations are not profitable if type II deviations are not (see Section A
of the Appendix for a proof).

LEMMA 5. The following statements are true regarding any deviation wd ∈ (w−1,
w). (i) If an applicant gets the wd-job, then his future application is to either w

or w+1. (ii) If w−2-applicants do not have incentive to apply to wd, then neither do
w−t -applicants, where t ≥ 3.

The intuition for the above lemma is again the single-crossing property of the ap-
plicants’ indifference curves. This is obvious for part (ii), because part (ii) extends
Lemma 2 to wages outside the equilibrium support and Lemma 2 relies on the
single-crossing property. For part (i), the single-crossing property implies that,
because w > wd, an applicant at w is more willing to sacrifice the employment
probability for the wage gain than an applicant at wd. Since the high employment
probability with wage w+1 is more attractive to a w-applicant than higher wages,
it must be even more attractive to an applicant at the lower wage wd.

Now we turn to type I and type II deviations. A type I deviation is profitable
only when the support of the wage distribution is too sparse, whereas a type II
deviation is profitable only when the support is too dense. (Try depicting these
two types of deviations in Figure 2.) Note that the exception (ii) in restriction
(One-rung) is a type I deviation. Also, a type II deviation is meaningful only when
there are three or more rungs on the ladder.

Consider first a type I deviation wd ∈ (w−1, w). Let J d
f (wd) be the deviating

firm’s value function after successfully recruiting a worker and J d
e (wd) the value

function of a worker who gets the job wd, conditional on that the worker’s future
application is to w as required in a type I deviation. Then,

J d
f (wd) = y − wd

r + σ + λ1q

J d
e (wd) = wd + σJu − λ1S + λ1qJe(w)

r + σ + λ1q



676 DELACROIX AND SHI

These functions are different from those in (15) and (16), because the worker’s
future application direction is different from the one depicted in Figure 2 (again,
we invoked (Off-eqm)).

For the deviation wd to be profitable, it must satisfy the following conditions:

(Ia) By applying to wd, a w−1-applicant’s expected surplus is equal to E(w−1);
(Ib) The deviating firm earns an expected surplus greater than C.

These two conditions cannot both be satisfied. To see this, suppose that the
deviation satisfies (Ia). Let qd be the employment probability of an applicant
applying to wd. Then, (Ia) implies

qd[J d
e (wd) − Je(w−1)

] = E(w−1) = Cq/ f(42)

Substituting J d
e (wd) and Je(w−1) into the above equation, we solve wd as follows:

wd = w−1 + (r + σ + λ1q) Cq/( f qd)(43)

The deviating firm’s expected surplus is π(ad) = h(ad)J d
f (wd). Substituting (y −

w−1) from (25) and (wd − w−1) from (43), π(ad) becomes

π(ad) = h(ad)

(
C

h−1

− qC
f qd

)
= C

(
h(ad)

h−1

− adq
f

)

The surplus π(ad) is maximized at ad = a∗, where π ′(a∗) = 0. Thus, a∗ =
ln( f/qh−1), and the maximum expected surplus of the deviating firm is

π(a∗) = C
(

h(a∗)

h−1

− a∗q
f

)
= Cq

f

(
ea∗ − 1 − a∗) = ea∗ − 1 − a∗

ea − 1 − a
C

where the second equality comes from substituting h−1 = e−a∗
f/q, and the third

equality from the definition of f . Because (ea − 1 − a) is an increasing function, a
necessary condition for the deviation to be profitable is a∗ > a. However, for all
ad > a, we have qd < q. Since J d

e (wd) < Je(w), then wd yields a lower expected
surplus to a w−1-applicant than w does, which contradicts (42).

Therefore, a type I deviation is not profitable. The explanation is as follows.
A type-I deviation wd ∈ (w−1, w) competes against an equilibrium wage w for
the same applicants (i.e., w−1-applicants). In comparison with w, the deviation wd

offers a w−1-applicant not only a lower wage but also a lower value for future ap-
plication. For the deviation to attract this applicant, it must provide a significantly
higher employment probability than a job opening at w does. This implies that the
deviating firm’s hiring probability must be significantly lower than that of a firm
recruiting at w. In this case, the deviator’s expected surplus from recruiting will
not be enough to cover the vacancy cost.
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Now consider a type II deviation wd ∈ (w−1, w). The deviating firm’s ex post
value J d

f (wd) and the employee’s value J d
e (wd) are

J d
f (wd) = y − wd

r + σ + λ1q+1

(44)

J d
e (wd) = wd + σ Ju − λ1S + λ1q+1 Je(w+1)

r + σ + λ1q+1

(45)

Suppose that the deviation is profitable. Then it must satisfy the following
conditions:

(IIa) By applying to wd, a w−2-applicant’s expected surplus is equal to E(w−2);
(IIb) The deviating firm earns an expected surplus greater than C;
(IIc) A wd-applicant’s future application is indeed to w+1 instead of w.

It can be shown that the deviator’s maximum expected surplus exceeds C if
(IIa) is the only constraint. For the deviation to be not profitable, the constraint
(IIc) must be binding sufficiently. The following lemma gives the corresponding
requirement (see Section E of the Appendix for a proof).

LEMMA 6. Define β∗ by the following equation:

h(β∗) = 1

/[
1

h
+ q+1

(q − q+1) f+1

]
(46)

A type II deviation is not profitable if and only if the following condition is satisfied:

β∗ − h(β∗)ea−1 + r + σ + λ1q+1

r + σ + λ1q
(ea−1 − 1 − a−1) ≥ 0(47)

We summarize the results on existence as follows:

PROPOSITION 4. Maintain Assumption 1 and Restriction (Off-eqm). An equilib-
rium exists if and only if the following conditions hold: (37) in Proposition 3, (41)
in Lemma 4, and (if M ≥ 3) (47) in Lemma 6.

Let us make two remarks. First, the conditions in the above proposition may fail
to hold in certain parameter regions, in which case a stationary equilibrium does
not exist. This does not necessarily imply that a Nash equilibrium does not exist
in such parameter regions. For example, there might be nonstationary equilibria,
which we do not know how to formulate. Second, when an equilibrium exists, it
may not be unique. As Proposition 3 indicates, the hiring probability at the highest
wage may lie in a range of values.
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6. PROPERTIES OF THE EQUILIBRIUM

6.1. Analytical Properties. Proposition 2 reveals the following realistic prop-
erties of the equilibrium:� A firm is more likely to succeed in hiring at a higher wage than at a lower

wage, whereas an applicant is more successful in getting a low-wage job
than a high-wage job. This result arises from the fact that the queue length
of applicants increases endogenously with wage.� A worker’s wage, on average, increases with his employment duration,
because a longer duration indicates that he has likely climbed more rungs
on the ladder. Also, the higher wage a worker had just before becoming
unemployed, the longer it will take for him to return to that wage.� A worker’s quit rate decreases with wage. The quit rate of a worker at
wage w is ρ(w) = λ1q(a+1). Because the employment probability for the
next wage (q(a+1)) decreases as wage increases, the quit rate falls. By the
previous property, a worker’s quit rate also decreases on average with the
employment duration. This also implies that there is a positive correlation
between wage and the average tenure at that wage. As the workers em-
ployed at high wages quit less frequently than the workers employed at low
wages, the average tenure at high wages must be longer than at low wages
in the steady state.24

These properties are similar to those in the BM model. To explore the properties
that are unique to the wage ladder, we establish the following proposition in
Section F of the Appendix.

PROPOSITION 5. For any given hM that satisfies (24), the computed sequence
satisfies: (i) E(w−1) > E(w) (≥S), and if (41) in Lemma 4 holds, then (ii) w − w−1 >

w+1 − w.

Because E(w−1) ≥ S, all workers except those at the highest wage are willing
to incur the fixed cost to apply to higher wages. Moreover, E(w−1) > 0 implies
Je(w) > Je(w−1), so that the value of employment to a worker indeed increases
with wage.

The ladder structure has the following novel implications on wage mobility:� Wage mobility is limited: In each period a worker either climbs one rung up
on the ladder or stays at the current wage or transits into unemployment.� The gap between two adjacent rungs on the ladder shrinks as a worker
climbs the ladder. So, the higher the wage, the smaller the wage gain in the
next job change.25

24 Of course, this is not necessarily true in the transition to the steady state. In particular, if the

number of workers employed at low wages in the initial state of the economy exceeds the number in

the steady state, then many high-wage workers are ones who had just transited into those wages. This

transitional effect disappears in the steady state.
25 A referee, whom we thank, made us aware of recent work by Barlevy (2003) who finds, using

record theory and a Burdett–Mortensen on-the-job search model, that the null hypothesis that all

wage gains are constant in percentage terms cannot be rejected.
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wage ladder, i.e., E(w−1) > E(w), despite the fact that the value of em-
ployment increases with wage. This implies that an applicant’s employment
probability must decrease more rapidly than the increase in wage along the
wage ladder.

Limited wage mobility is broadly consistent with the evidence documented by
Buchinsky and Hunt (1999). As discussed in the introduction, the BM model
generates the opposite pattern that a worker’s transition probability increases
with the target wage. It is worth repeating that the limitation on wage mobility
is endogenous in our model, because the workers choose optimally to climb the
wage ladder gradually.

Our model also generates wage distributions that differ from those in the BM
model, as stated in the following proposition (see Section F of the Appendix for
a proof):

PROPOSITION 6. The density of offer wages decreases with wage. A sufficient
condition for the density of employed wages to be decreasing at the upper end of
the wage support is

σ

λ1

>
1 − (1 + ā) e−ā

ā − ln (1 + ā)
(48)

When r is sufficiently close to 0, a sufficient condition for the above inequality is
C/S>2.373. A sufficient condition for the density of employed wages to be increasing
at the upper end of the wage support is σ/λ1 < q(ā).

To appreciate the results in the above proposition, recall that the BM model
of undirected search generates an increasing and convex density function of offer
wages, which leads further to an increasing and convex density function of em-
ployed wages. Sufficient heterogeneity among workers and/or jobs is needed to
generate a decreasing density at high wages in the BM model (e.g., van den Berg
and Ridder, 1998).

Our model generates a decreasing density function of offer wages among ho-
mogeneous workers. This result is easy to understand, given the ladder structure.
In the stationary equilibrium, the flow of workers into every equilibrium wage w

must be equal to the outflow. Because the outflow consists of exogenous separa-
tion and quits, the inflow must exceed the number of quits. The inflow of workers
into w is the number of new hires at w, that is, hv. The number of quits from w

is equal to the number of new hires at the next wage level, h+1v+1, because the
applicants at w are the sole source of hiring at the next wage. Thus, hv > h+1v+1

in the stationary equilibrium. This necessarily implies v > v+1, because h+1 > h.
Therefore, the density of offer wages necessarily decreases with wage.

Note that the above explanation uses the equilibrium feature that a high-wage
recruiting firm recruits more successfully than a low-wage firm. At this point, one
must ask the following question: Since the BM model also has this feature, why
does that model generate an increasing density of offer wages instead? The answer
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is that the BM model does not generate limited wage mobility as our model does.
In particular, since search is undirected in the BM model, a firm’s matching rate is
independent of the firm’s wage offer and is the same for all firms. Because a high
wage is more likely to be accepted by a randomly selected applicant, a high-wage
recruiting firm is more successful in hiring. This higher matching success, together
with the higher probability of retaining a worker, is more than compensating for
the higher wage offer. To make firms indifferent between posting different wages,
there must be more firms competing against each other by offering high wages.
This generates the increasing density function of offer wages in the BM model.

To make the density function of offer wages decrease at high wages, one must
sufficiently reduce the advantage of recruiting at high wages. An arbitrary way
to do so in the BM model is to assume that firms’ matching rates are sharply
decreasing in wages, which is essentially what Postel-Vinay and Robin (2002)
have done.26 It is questionable whether it is optimal in the BM model for a high-
wage recruiting firm to reduce its matching rate. In our model, such decreasing
matching rates are not optimal—each high-wage recruiting firm optimally uses a
strategy to induce a high-matching rate for itself. Despite this high-matching rate
for each high-wage firm, the base of applicants for high-wage firms is smaller than
for low-wage firms, because low-wage workers choose not to apply to high-wage
firms. This is the reason why fewer firms recruit at a high wage than at a low wage.

Finally, we turn to the density of employed wages. The density of employed
wages can also be decreasing, but it is not always so. The ambiguity arises because
the density of employed wages depends on both the inflow and the outflow of
workers. Although, there is a larger flow of workers into a low wage than into a
high wage, the quit rate from a low wage is also higher than from a high wage.
There are more workers employed at a low wage than at a high wage if and only if
the difference between the inflows into the two wages is larger than the difference
between the outflows. This is satisfied at the upper end of the wage distribution
if the hiring cost is large relative to the application cost. In general, however, the
density of employed wages may not even be monotonic with respect to wages. The
numerical examples in the next subsection will display some decreasing density
functions of employed wages.

6.2. Numerical Examples. Consider the following parameter values: y =
1000, b = 0, C = 60, S = 1, r = 0.02, λ1 = 0.025, λ0 = 0.2, and σ = 0.125. These
parameter values satisfy all equilibrium requirements specified in Proposition 4.
Under these parameter values, there is a unique equilibrium and the wage ladder
has four rungs. The unemployment rate is u = 40.9% and the overall vacancy-
worker ratio is k = 0.41. Other characteristics of this equilibrium are summarized
in Table 4.

The results in Table 4 confirm the properties in Propositions 2 and 5. In addi-
tion, a notable feature is that the small difference between wages induces large

26 Postel-Vinay and Robin (2002) assume that firms’ matching (contact) rates are sharply decreasing

over firms’ productivity. Since high-productivity firms are also likely to offer high wages, firms’ matching

rates (on average) are sharply decreasing over wages.
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TABLE 4

EQUILIBRIUM IN A NUMERICAL EXAMPLE

i wi vi(%) ni
1−u (%) ai qi(%) hi(%)

1 947.6 95.7 87.8 0.21 90.4 18.6

2 982.6 4.0 11.2 0.78 69.6 53.9

3 988.9 0.2 1.0 1.77 46.9 83.0

4 990.8 <0.1 0.1 2.94 32.2 94.7

differences in the employment probability the hiring probability, and the density
of offer wages. For example, when the wage increases from 947.6 to 982.6, the
employment probability falls sharply from 90.4% to 69.6%, the hiring probability
increases from 18.6% to 53.9% and the density of offer wages falls from 95.7% to
4.0%. A predominant fraction of firms recruit at the lowest wage.

The density of employed wages is also a sharply decreasing function of wages
in this example. A large fraction of workers are employed at the lowest wage,
although the distribution is less skewed toward low wages than the offer wage
distribution.

On-the-job search is important for the wage ladder. We illustrate this impor-
tance in Table 5, by changing λ1 while fixing other parameters (including λ0). When
λ1 = 0, on-the-job search is shut down and, as previous models of directed search
predict, the wage distribution is degenerate. However, the wage ladder becomes
nondegenerate as soon as workers can search while employed. Even for a very
small value λ1 = 10−4, the support of equilibrium wages is almost as dispersed as
when λ1 = 0.025. Thus, the support of the wage distribution does not seem upper
hemi-continuous in λ1 at λ1 = 0. If one uses the range of equilibrium wages to
measure wage dispersion, then such dispersion will change dramatically when λ1

approaches 0.
However, the equilibrium seems continuous at λ1 = 0 in terms of wage distribu-

tions. When λ1 is close to 0, the distributions of offer wages and employed wages
both have almost a unity of mass at the lowest wage. As λ1 increases, the densi-
ties of wage distributions become more spread out to higher wages, and so the

TABLE 5

VARIOUS DEGREES OF ON-THE-JOB SEARCH

λ1 = 0 λ1 = 10−4 λ1 = 0.01 λ1 = 0.025 λ1 = 0 λ1 = 10−4 λ1 = 0.01 λ1 = 0.025

w1 953.2 953.2 951.0 947.6 a1 0.21 0.21 0.21 0.21

w2 984.0 983.4 982.6 a2 0.79 0.78 0.78

w3 989.6 989.4 988.9 a3 1.82 1.80 1.77

w4 991.0 990.9 990.8 a4 3.28 3.13 2.94

% λ1 = 0 λ1 = 10−4 λ1 = 0.01 λ1 = 0.025 % λ1 = 0 λ1 = 10−4 λ1 = 0.01 λ1 = 0.025

v1 100 99.9 98.2 95.7
n1

1−u 100 99.9 94.7 87.8

v2 <0.1 1.8 4.0 n2
1−u <0.1 5.1 11.2

v3 <0.1 <0.1 0.2 n3
1−u <0.1 0.2 1.0

v4 <0.1 <0.1 <0.1 n4
1−u <0.1 <0.1 0.1
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distributions become less skewed. Some other characteristics of the equilibrium,
such as the support of the distribution �, the unemployment rate u, and market
tightness k, change very little with λ1 in the range we experimented with.

7. THE ROLE OF THE APPLICATION COST AND THE CONTRAST

WITH BURDETT AND MORTENSEN

In Section 3.2, we explained why directed search destroys the BM equilib-
rium and creates a wage ladder. The difference between directed search in our
model and undirected search in the BM model is the fundamental one between
the two models. However, our model differs from the BM model in another
characteristic—our model has a fixed cost of application whereas the BM model
does not have such a cost. In this section, we will first clarify the role of the appli-
cation cost in our model and then compare our model with the BM model in the
presence of the application cost.

We explained in Section 3.2 that any positive application cost S is enough to
restrict attention to a wage ladder type of equilibrium. We also explained in Sec-
tion 4.2 that a small application cost is necessary for obtaining an equilibrium by
preventing a profitable deviation to posting a wage higher than wM. Notice, how-
ever, that having costly applications does not affect the application decisions at
other rungs, since E(wi) > S for i < M (see Proposition 5). That is, the constraint
E(wi) ≥ S does not bind for any application except for the application to wages
equal to or higher than wM.

Because of this limited role of the application cost, we can make most appli-
cations free without affecting the results. For example, consider the following
assumption of differential costs of application: “Every applicant who is currently
employed at wages higher or equal to an exogenous level wH must incur a fixed
cost S of application, while the applicants who are currently employed at wages
lower than wH do not need to incur the cost.” If wH is set at the level wM, then
most applicants do not need to incur the application cost, and yet the equilibrium
is the same as the one in our model.27

Now, we explore the equilibrium in the BM model when the application cost
exists. Suppose that every applicant must incur a positive cost S to apply to a job.
Then, it is well known that the BM model exhibits no wage dispersion at all, no
matter how small the cost is (an argument similar in spirit to Diamond, 1971).
To show this result, suppose, to the contrary, that there exists a nondegenerate
wage distribution in the presence of the application cost. It is easy to show that the
worker’s optimal strategy dictates that above a certain wage wns (close enough to
the upper end of the support w̄), employed workers are not willing to engage in
costly search to improve their condition. Because the application cost is strictly
positive, that stopping wage wns is strictly less than the upper support of the dis-
tribution w̄. But then, an individual firm at w̄ could increase profits by decreasing

27 Postel-Vinay and Robin (2004), in a random search environment, allow for some outside offers

to cost effort and for some other offers to arrive at no cost, while on the job. Their model also differs

from ours due to firm heterogeneity and because they give firms the possibility to match outside offers.

Depending on the distribution of productivity across firms, a decreasing wage distribution may result.
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the wage it offers by ε < w̄ − wns , without affecting the probability of having its
offer accepted. Hence, an equilibrium with wage dispersion in a BM world with
fixed application cost is not possible.

This discontinuity of the equilibrium in the BM model with respect to S com-
plicates the comparison between our model and the BM model. However, there
are still two ways to differentiate the two models. First, the BM model does not
generate a wage ladder, regardless of whether there is an application cost, whereas
our model does with a small application cost. Second, it is possible to compare the
results of the two models directly under the above-mentioned differential costs
of application, that is, under the assumption that the application cost S must be
incurred only when the applicant is currently employed at a wage equal to or
higher than wH = wM. Suppose that S is sufficiently small (but positive), so that
wH is sufficiently close to y. In this case, the BM equilibrium is unaffected by such
application costs thus still exhibiting a nondegenerate wage distribution, because
the highest equilibrium wage in the BM model is lower than wH . Since the equilib-
rium in our model is also unaffected by the differential application costs, the two
models differ from each other only in whether search is directed or undirected.
All the comparisons that we have made between the two models remain valid.
In particular, the wage distribution in the BM model does not constitute a wage
ladder and it generates wage mobility that is unrealistically high.

Finally, it should be clear from the above discussion that our model will not
start resembling the BM model even when the application cost becomes smaller.
As S falls, the highest equilibrium wage gets closer and closer to the worker’s
productivity, but the number of rungs on the wage ladder is still bounded above.
In contrast, the BM model generates either a degenerate wage distribution or a
continuum of equilibrium wages, depending on the details of the application cost.

8. CONCLUSION

In this article, we have studied the equilibrium in a large labor market where
employed workers search on the job and firms direct workers’ search using wage
offers and employment probabilities. All applicants observe all offers before the
application. There is wage dispersion among workers, despite the assumption that
all workers and all jobs are homogeneous. Moreover, equilibrium wages form a
ladder. Because workers optimally choose to climb the ladder one rung at a time,
wage mobility is limited endogenously. Also, wage gains diminish when a worker
climbs up the ladder, because the gap between two adjacent rungs diminishes with
wage. Furthermore, the density of the offer wage distribution is strictly decreasing,
and the density of employed wages can be either decreasing or nonmonotonic. The
equilibrium generates these new features without compromising on other familiar
features, such as a worker’s quit rate decreasing with wage and a worker’s wage
increasing with the employment duration.

The wage ladder arises here without any exogenous factors that hinder wage
increases. For example, there is no gradual revelation of workers’ productivity or
job quality, no learning-by-doing and no match-specific productivity, as all workers
have the same productivity on all jobs that is observable before match. There is
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no differential information regarding job openings, as all applicants observe all
job openings before they apply. Also, firms do not discriminate the applicants,
as they select all received applicants with equal probability. Rather, a worker
chooses to climb the ladder gradually because his current wage affects his trade-
off between the employment probability and wage. The jobs one level about the
worker’s current wage offer a significantly higher employment probability than
other jobs at higher wages and, as such, they provide the best trade-off between
the employment probability and wage.

We view the omission of the above factors as a strength, rather than a weakness,
of the model. With purely homogeneous workers and jobs, the ability of the model
to generate a wage ladder demonstrates the robustness of wage dispersion and the
importance of search frictions for such wage dispersion. The results can be useful
for explaining within-group wage inequality and wage mobility observed in the
data, as we alluded to in the introduction.

The structure of the model permits many extensions and modifications. We are
currently pursuing two. The first is to allow unemployment benefits to depend
on workers’ wages prior to unemployment, say, through the so-called replace-
ment ratio. Because unemployed workers at each possible level of unemployment
benefits form a source of a wage ladder, there will be many wage ladders in equi-
librium. This will generate many more (and perhaps more dispersed) equilibrium
wage levels than in the current article, and hence will help the model match the
data better. The extension will also allow us to examine the equilibrium effects
of changing the replacement ratio. The second line of research is to consider the
efficiency properties of this model of directed search on the job, an issue consid-
ered in Acemoglu and Shimer (1999a,b), Moen (1997), Moen and Rosen (2004),
and Shi (2001, 2002b) in various setups.

APPENDIX

A. Proofs of Lemmas 1, 2, and 5. We prove Lemma 1 first. Because the
lemma is trivially true for w∗ = w1(= inf �), we examine a firm posting w∗ > w1.
The decision problem is (P), with w being replaced with w∗, q(w) with q(w∗),
etc. Shorten the notation q(w∗) to q∗. Suppose that (w∗, q∗) is an equilibrium
offer. As concluded earlier, the constraint (6) must hold as equality for all types of
applicants whom the firm attracts. Moreover, the constraint (6) must be binding
on the firm for at least one type of applicants whom the firm attracts; otherwise,
the firm should set q∗ = 0 to maximize the hiring probability, which contradicts a
nonbinding constraint.

Suppose that the offer (w∗, q∗) attracts both applicants at wi and wj, with wi <

wj, and that the applicants’ constraint binds for w′ =wi. Consider an alternative of-
fer (ŵ, q̂), where ŵ = w∗ + ε, q̂[Je(ŵ) − Je(w j )] = E(w j ) = q∗[Je(w∗) − Je(w j )],
and ε > 0 is an arbitrarily small number. Since Je(·) is a strictly increasing function,
q̂ < q∗. Thus,

q̂[Je(ŵ) − Je(wi )] = q∗[Je(w∗) − Je(wi )
] − (q∗ − q̂)[Je(w j ) − Je(wi )]

< q∗[Je(w∗) − Je(wi )
] = E(wi )
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The inequality follows from the facts that q > q̂ and Je(wj) > Je(wi). Thus, the new
offer (ŵ, q̂) still attracts wj-applicants but not wi-applicants. Because this elimi-
nates a binding constraint on the firm’s decision problem with very little change
in the offer, the firm’s expected surplus increases, contradicting the supposition
that (w∗, q∗) is an equilibrium offer.

The proof is similar if the offer (w∗, q∗) induces the applicant’s constraint to
bind for w′ = wj. In this case, construct the alternative offer by setting ŵ = w∗ − ε

and q̂[Je(ŵ) − Je(wi )] = E(wi ). This alternative offer attracts wi-applicants but
not wj-applicants, and it increases the firm’s expected surplus. This completes the
proof of Lemma 1.

For Lemma 2, suppose that the w−1-applicants prefer to apply to w relative to
w+1, that is,

q[Je(w) − Je(w−1)] ≥ q+1[Je(w+1) − Je(w−1)]

For all t ≥ 2, we have

q[Je(w) − Je(w−t )] − q+1[Je(w+1) − Je(w−t )]

= {q[Je(w) − Je(w−1)] − q+1[Je(w+1) − Je(w−1)]}
+ (q − q+1)[Je(w−1) − Je(w−t )]

The difference in {·} is nonnegative by the supposition. The last term on the right-
hand side is also positive, because q > q+1 and Je(w−1) > Je(w−t ) for all t ≥ 2.
Thus, the above deference is positive, implying that applying to w yields a higher
expected surplus for a w−t-applicant than applying to w+1.

Now turn to Lemma 5. For part (i) in the lemma, we show that a wd-applicant
does not have incentive to apply to w+t, for all t ≥ 2. Suppose that a worker gets
the job wd. Let J d

e (wd) be the value function of such a worker employed at wd.
Because this worker is not restricted to applying to w+1 next, J d

e (wd) may not
obey (16). However, whatever job opportunities a worker at wd will have in the
future, a worker employed at wage w will have as well with the same probability
(under Restriction (Off-eqm)). Thus, J d

e (wd) < Je(w). For the worker employed
at wd, applying to w+1 next yields a higher expected surplus than to any higher
wage w+t (t ≥ 2), as shown below:

q+t
[
Je(w+t ) − J d

e (wd)
] − q+1

[
Je(w+1) − J d

e (wd)
]

= q+t [Je(w+t ) − Je(w)] + q+t
[
Je(w) − J d

e (wd)
] − q+1

[
Je(w+1) − J d

e (wd)
]

< q+1[Je(w+1) − Je(w)] + q+t
[
Je(w) − J d

e (wd)
] − q+1

[
Je(w+1) − J d

e (wd)
]

< q+1[Je(w+1) − Je(w)] + q+1

[
Je(w) − Je(wd)

] − q+1

[
Je(w+1) − Je(wd)

]
= 0
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The first inequality follows from our previous result that a w-applicant prefers to
apply to w+1 relative to w+t for all t ≥ 2. The second inequality comes from the
facts that q+t < q+1 for all t ≥ 2 and Je(w) > J d

e (wd).
For part (ii), suppose that w−2-applicants do not have incentive to apply to wd.

Then,

qd[J d
e (wd) − Je(w−2)

] ≤ q−1[Je(w−1) − Je(w−2)]

where qd is the probability with which an applicant to wd gets the job. Using an
argument similar to that established Je(w) > J d

e (wd), we have J d
e (wd) > Je(w−1).

Then, the above inequality implies qd < q−1. Now, for all t ≥ 3, the following
relationships hold:

qd[J d
e (wd) − Je(w−t )

] − q−1[Je(w−1) − Je(w−t )]

= qd[J d
e (wd) − Je(w−2)

] + qd[Je(w−2) − Je(w−t )] − q−1[Je(w−1) − Je(w−t )]

≤ q−1[Je(w−1) − Je(w−2)] + qd[Je(w−2) − Je(w−t )] − q−1[Je(w−1) − Je(w−t )]

< q−1[Je(w−1) − Je(w−2)] + q−1[Je(w−2) − Je(w−t )] − q−1[Je(w−1) − Je(w−t )]

= 0

The first inequality follows from the supposition about w−2-applicants and the
second inequality from qd < q−1. Therefore, a w−t -applicant gets a higher expected
surplus from applying to w−1 than to wd. �

B. Proofs of Propositions 1 and 3. Before proving the propositions, we pro-
vide the following lemma (the proof is omitted; see Delacroix and Shi, 2002,
Appendix A):

LEMMA B.1. Define f (·) as in (20) and g(·) as follows:

g(a) ≡ (r + σ + λ1q)

(
1

f (a)
− 1

h(a)

)
(B.1)

For all a > 0, f ′(a) > 0, d
da (

f (a)
a ) > 0, d

da ( 1
f (a)

− 1
aq(a)

) < 0, and

(ea − 1)
[
a(ea − 1)2 − (ea − 1 − a)2

] − (ea − 1 − a)3 > 0(B.2)

Furthermore, if (r + σ )/λ1 > f (a)/a, then g′(a) < 0 for all a > 0.

We prove Proposition 1 by induction. The argument preceding the proposition
in the text has already established (25) and (26) for j = 0. To verify (27) and (28)
for j = 0, set i = M − 1 (and wd = wM−1) in (16) to obtain an equation for Je(wM−1).
Using this equation and substituting Je(wM), we get
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Je(wM) − Je(wM−1) = wM − wM−1 + λ1S
r + σ + λ1qM

Combining this equation with (18) for i = M − 1, we obtain (27) and (28) for
j = 0.

Now, suppose that (25)–(28) hold for an arbitrary j ∈ {0, 1, . . . , M − 3}. We
show that they also hold for j + 1 and so, by induction, the proposition holds for
all j. For j + 1, Equation (25) comes from setting i = M − ( j + 1) in (17), and (26)
from the definitions of hM−( j+1) and qM−( j+1). To verify (27) and (28) for j + 1, set
i = M − j − 2 (and wd = wM− j−1) in (16) to obtain an equation for Je(wM− j−2).
Substituting this result, we get

Je(wM−( j+1)) − Je(wM−( j+2))

= 1

r + σ + λ1qM−( j+1)

[
(r + σ )Je(wM−( j+1)) − wM−( j+2) − σ Ju + λ1S

]
= 1

r + σ + λ1qM−( j+1)

[
wM − wM−( j+2) + λ1S − (r + σ )C

j∑
t=0

1

fM−t

]

The second equality comes from substituting (28) for j, which holds by supposition.
Combining the above result with (18) for i = M − ( j + 1), we obtain (27) and
(28) for j + 1.

Finally, the zero-profit condition (17) must hold for a firm posting w1. By the
above derivation, this implies that (25) and (26) must hold for j = M − 1. By
contrast, (27) and (28) need to be modified for j = M − 1. By definition, w0 = b
and Je(w0) = Ju. To derive (29), use the wage ladder to simplify (10) as rJu = b −
λ0S + λ0q1[Je(w1) − Ju]. Substituting [Je(w1) − Ju] from (18) (with i = 1), we
obtain (29). This completes the proof of Proposition 1.

Now, we prove Proposition 3. First, for any fixed h∗ that satisfies (24), we con-
struct M(h∗) in the proposition. Start with an arbitrary but sufficiently large integer
m and set hm = h∗. Compute the sequence (am−t )t≥0 according to Proposition 1
and define

δi (m) = wm − b + λ0S
r + σ

− Cλ0qi

(r + σ ) fi
− C

m−i∑
t=0

1

fm−t

Note that δ1(M) = 
(M, h∗), where 
 is given by (36). By Proposition 2,
am−t−1 < am−t ≤ ā < ∞ for all t ≥ 0. Since 1/f m−t and qm−t/f m−t are both de-
creasing functions of am−t , and since ai < ai+1 (see Proposition 2), we get

δi+1(m) − δi (m) = Cλ0

r + σ

(
qi

fi
− qi+1

fi+1

)
+ C

fi
>

C
fi

≥ C
f (ā)

Because C/ f (ā) is bounded away above 0, the sequence δi decreases by a strictly
positive amount each time when i decreases.
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Suppose that δm(m) ≥ 0. Then there exists i∗ such that δi (m) ≤ 0 for all i ≤
i∗ and δi (m) > 0 for all i ≥ i∗ + 1. Let M(h∗) = m − (i∗ − 1) and compute the
sequence {δi (M(h∗))} by setting hM(h∗) = h∗. Then, δi (M(h∗)) ≤ 0 for all i ≤ 1 and
δi (M(h∗)) > 0 for all i ≥ 2. Moreover, for any integer M′ �= M(h∗), the sequence
{δi (M′)} computed by setting hM′ = h∗ satisfies δ1(M′) = δ(M(h∗)−M′+1)(M(h∗)).
From the properties of the sequence {δi (M(h∗))}, we have δ1(M′) > 0 for all M′ ≤
M(h∗) − 1 and δ1(M′) < 0 for all M′ ≥ M(h∗) + 1. This is the property described
for M(h∗) in Proposition 3.

The condition δm(m) ≥ 0 is guaranteed by Assumption 1. To see this, substitute
wm = y − C(r + σ )/hm to rewrite the condition δm(m) ≥ 0 as

b ≤ y + λ0S − C[(r + σ )eam + λ0]

eam − 1 − am

The right hand of this inequality is an increasing function of am. Because am is
bounded from below by ā − ln(1 + ā) according to (24), a sufficient condition for
the above inequality is that it holds for this lower bound of am, which is imposed
as (30).

Next, we find the equilibrium values of hM and M. To compute the lowest equi-
librium value of hM, choose h∗ = 1 − (1 + ā)e−ā (the lower end of the interval
given by (24)) and use the above procedure to obtain the corresponding M(h∗).
Then, 
(M(h∗), h∗) ≥ 0. If 
(M(h∗), h∗) = 0, then h∗ is the lowest equilibrium
value of hM and M(h∗) is the equilibrium number of rungs on the ladder. Sup-
pose 
(M(h∗), h∗) > 0. Then 
(M(h∗) + 1, h∗) < 0. Set M∗∗ = M(h∗) + 1. By
Proposition 2, the a sequence is an increasing function of hM. So is wM. Thus,

(M∗∗, h) is an increasing function of h. For there to be an equilibrium solution
for hM, 
(M∗∗, h) must increase to cross 0 when h increases to the upper bound in
(24). The necessary and sufficient condition for such crossing to exist is (37). The
first crossing gives the lowest equilibrium value of hM, where M∗∗ = M(h∗) + 1 is
the equilibrium number of rungs on the ladder.

We can also compute the highest equilibrium value of hM. To do so, choose
the upper bound of hM, 1 − e−ā , to be the starting value of h∗ and compute the
corresponding M(h∗). If 
(M(h∗), h∗) = 0, then h∗ is the highest equilibrium value
of hM. If 
(M(h∗), h∗) > 0, then fix M = M(h∗). For there to be an equilibrium
solution for hM, 
(M, h) must decrease to cross 0 when h decreases to the lower
bound of hM in (24). The first crossing gives the highest equilibrium value of hM,
where M = M(h∗) is the equilibrium number of rungs on the ladder.

Similarly, we can compute all equilibrium values of hM, which must lie in
[hL, hH]. �

C. Proof of Proposition 2. Before proving the proposition, we derive some
useful equations from Proposition 1. Subtracting (27) for j and j + 1, we get

w − w−1 = (r + σ + λ1q)C
f

− λ1Cq+1

f+1

(C.1)
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The suppressed index is i = M − j , and the above equation holds for all j ∈
{1, 2, . . . , M − 2}. For j = 0, the equation also holds once the last term is replaced
with λ1Cq(ā)/ f (ā) = λ1S. Moreover, for all j ∈ {1, . . . , M − 2}, we have

r + σ + λ1q
h−1

= 1

C
(y − w−1) = 1

C
(y − w) + 1

C
(w − w−1)

= r + σ + λ1q+1

h
+ 1

C
(w − w−1)

= r + σ + λ1q+1

h
+ r + σ + λ1q

f
− λ1q+1

f+1

The first equality comes from using (25) for j + 1, the second equality from rewrit-
ing, the third equality from using (25) for j, and the last equality from substituting
(C.1). Thus, the following equation holds for all j ∈ {1, . . . , M − 2}

h−1 = (r + σ + λ1q)

/(
r + σ + λ1q+1

h
+ r + σ + λ1q

f
− λ1q+1

f+1

)
(C.2)

For j = 0, replace the first term involving q+1 with 0 and the term λ1q+1/f +1 with
λ1q(ā)/ f (ā) = λ1S/C.

We now prove Proposition 2. First, we verify (32) and (33) by induction. Since
h(a) is an increasing function and q(a) a decreasing function, all three inequalities
in (32) are equivalent to each other. To begin, we show that (32) and (33) hold for
j = 0. By (24), aM ≤ ā. With (C.2) for j = 0, we rewrite the condition hM−1 < hM

as follows:

0 <
r + σ + λ1qM

fM
− λ1S

C
− λ1qM

hM
= λ1

(
1

eaM − 1 − aM
− 1

eā − 1 − ā

)
+

(
r + σ

fM
− λ1

aM

)
where we have used the definition of ā in (21) to replace S/C. Because aM ≤ ā
by construction (see (24)) and (ea − 1 − a) is an increasing function, the term
in the first (·) above is positive. Also, since f (a)/a is an increasing function (see
Lemma B.1), Assumption 1 implies (r + σ )/λ1 > f (ā)/ā ≥ fM/aM. That is, the
term in the second (·) above is also positive. Thus, hM−1 < hM, verifying (32) for
j = 0.

Now that aM−1 < aM ≤ ā, and that f (a)/a is an increasing function of a, (31)
implies (r + σ )/λ1 > f (aM−1)/aM−1. That is, (33) holds for j = 0.

Suppose that (32) and (33) hold for an arbitrary j ∈ {1, 2, . . . , M − 3}. We show
that they hold for j + 1. For (32), this amounts to proving h−2 < h−1. Computing
h−2 using (C.2), h−2 < h−1 if and only if

0 <
r + σ + λ1q

h−1

− λ1q
f

+ (r + σ + λ1q−1)

(
1

f−1

− 1

h−1

)
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Because h−1 < h by supposition, a sufficient condition for the above inequality is

0 <
r + σ + λ1q

h
− λ1q

f
+ (r + σ + λ1q−1)

(
1

f−1

− 1

h−1

)
The last term is equal to g(a−1). Note that g′(a) < 0 if (r + σ )/λ1 > f (a)/a (see
Lemma B.1). Because (r + σ )/λ1 > f (ā)/ā, we have g′(a) < 0 for all a ≤ ā. Since
a−1 < a by supposition and a ≤ ā, then g(a−1) > g(a). Thus,

r + σ + λ1q
h

− λ1q
f

+ g(a−1) >
r + σ + λ1q

h
− λ1q

f
+ (r + σ + λ1q)

(
1

f
− 1

h

)
= (r + σ )/ f (a) > 0

That is, (32) holds for j + 1. This in turn implies a−2 < a−1. Because f (a)/a is an
increasing function of a (see Lemma B.1), the supposition (r +σ )/λ1 > f (a−1)/a−1

implies (r + σ )/λ1 > f (a−2)/a−2. That is, (33) also holds for j + 1. By induction,
(32) and (33) hold for all j ∈ {0, 1, . . . , M − 2}.

Second, we prove (34), which is equivalent to h−1 > h(a − ln (1 + a)). By (C.2),
this in turn is equivalent to

0 >
r + σ + λ1q+1

h
− λ1q+1

f+1

+ (r + σ + λ1q)

(
1

f
− 1

h(a − ln(1 + a))

)
= r + σ + λ1q+1

h
− λ1q+1

f+1

− r + σ + λ1q
h

= −λ1

(
q − q+1

h
+ q+1

f+1

)
The equalities follow from calculating f and h(a − ln (1 + a)) explicitly. Because
q > q+1, the above inequality clearly holds, and so does (34).

Finally, we show that da/dhM > 0 and dw/dhM > 0 for any hM that satisfies
(24). From (27) it is easy to see that da/dhM > 0 implies dw/dhM > 0; so we
need to prove only da/dhM > 0. Because aM = −ln (1 − hM), it is obvious that
daM/dhM > 0. If da+t/dhM ≥ 0 for all t ≥ 1 implies da/dhM > 0, then by induction,
da/dhM > 0. Suppose that da+t/dhM ≥ 0 for all t ≥ 1. By construction, h =
λ1C( r + σ

λ1
+ q)/(y − w). Totally differentiating this relationship with respect to

hM (where dw/dhM can be calculated using (27)), we have

y − w

λ1Ch
h′ da

dhM
= 1

λ1C
dwM

dhM
+ r + σ

λ1

j∑
t=2

f ′
+t

f 2+t

(
da+t

dhM

)

+
[

q′
+1

(
1

h
− 1

f+1

)
+

(
r + σ

λ1

+ q+1

)
f ′
+1

f 2
+1

] (
da+1

dhM

)

Because wM = y − (r + σ )C/hM, dwM/dhM > 0. Because da+t/dhM ≥ 0 for all
t ≥ 1, a sufficient condition for da/dhM > 0 is that the following inequality holds
for all j:
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q′(a)

(
1

h−1

− 1

f

)
+

(
r + σ

λ1

+ q
)

f ′(a)

f 2
> 0

To verify this inequality, temporarily denote the left-hand side of the inequality
by LHS. Because a−1 > a − ln (1 + a), q′ < 0, (r + σ )/λ1 > f /a, and f ′ > 0, we
have

LHS > q′(a)

(
1

h(a − ln(1 + a))
− 1

f

)
+

(
f
a

+ q
)

f ′(a)

f 2

After substituting (q, f , q′, f ′), the right-hand side of this inequality has the same
sign as the expression, (ea − 1)[a(ea − 1)2 − (ea − 1 − a)2] − (ea − 1 − a)3, which
is positive for all a > 0 (see Lemma B.1). Thus, the required condition LHS > 0
holds. �

D. Proof of Lemma 3. To show that φ (a+1) is well defined for each a+1 by
the equality form of (40), we use the definition of f to rewrite the equality as

q(a)

q(a+1)

[
1 − ea − 1 − a

ea+1 − 1 − a+1

]
= 1(D.1)

The left-hand side of (D.1) is a decreasing function of a and an increasing function
of a+1 (note that a+1 > a). If φ(a+1) is a solution for a, then the solution is unique
and satisfies φ′ > 0, verifying part (i) of the lemma. When a = a+1, the left-hand
side of (D.1) is 0, which is less than the right-hand side. When a → 0, the left hand
approaches 1/q(a+1) > 1. Thus, the solution for a, φ(a+1), indeed exists and is
unique. This argument also establishes the inequality φ(a+1) < a+1 in part (ii) of
the lemma.

For the inequality φ(a+1) > a+1 − ln (1 + a+1) in part (ii), we show that the left-
hand side of (D.1) is greater than 1 (the right-hand side) at a = a+1 − ln (1 + a+1).
Substituting this particular value of a and rearranging terms, the condition to be
established becomes ln(1 + a+1) − a+1

1+a+1
> 0. The left-hand side of this inequality

is equal to 0 when a+1 = 0, and its derivative with respect to a+1 is a+1/(1 + a+1)2

> 0. Thus, the desired inequality holds for all a+1 > 0.
Before establishing part (iii), we claim that the following inequalities hold:

d
da

[
1

f (a)
− 1

h(φ(a))

]
≤ 0(D.2) [

f (a)

a
+ q(a)

]
d

da

[
1

f (a)
− 1

h(φ(a))

]
+ q′(a)

[
1

f (a)
− 1

h(φ(a))

]
≤ 0(D.3)

Because the expressions in these conditions are single-variable functions, which
do not have any parameter, we can graph them using a computer and show that
the inequalities hold, indeed. (However, it is difficult to prove them using pen and
paper.)
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Now, suppose a ≤ φ(a+1). We show a−1 < φ(a) or, equivalently, h−1 <

h(φ(a)). Under (C.2), this desired condition is equivalent to

r + σ + λ1q+1

h
− λ1q+1

f+1

+ (r + σ + λ1q)

(
1

f
− 1

h(φ(a))

)
> 0

Because a ≤ φ(a+1) by supposition, h ≤ h(φ(a+1)), and so a sufficient condition
for the above inequality is

r + σ + λ1q+1

h(φ(a+1))
− λ1q+1

f+1

+ (r + σ + λ1q)

(
1

f
− 1

h(φ(a))

)
> 0

Under (D.2) and (D.3), we have

d
da

{
(r + σ + λ1q)

[
1

f
− 1

h(φ(a))

]}
= (r + σ + λ1q)

d
da

[
1

f
− 1

h(φ(a))

]
+ λ1q′(a)

[
1

f
− 1

h(φ(a))

]
= λ1

(
f
a

+ q
)

d
da

[
1

f
− 1

h(φ(a))

]
+ λ1q′(a)

[
1

f
− 1

h(φ(a))

]
≤ 0

The first inequality comes from (D.2) and the result (r + σ )/λ1 > f (a)/a in
Proposition 2, and the second inequality from (D.3). Because a < a+1, the above
result implies

[
r + σ + λ1q+1

h(φ(a+1))
− λ1q+1

f+1

]
+ (r + σ + λ1q)

[
1

f
− 1

h(φ(a))

]
≥

[
r + σ + λ1q+1

h(φ(a+1))
− λ1q+1

f+1

]
+ (r + σ + λ1q+1)

[
1

f+1

− 1

h(φ(a+1))

]
= r + σ

f+1

> 0

This is the desired result. �

E. Proof of Lemma 6. Consider a type-II deviation wd∈ (w−1, w). This de-
viation induces the value J d

f (wd) to the firm and J d
e (wd) to the worker who gets

the job, where J d
f is given by (44) and J d

e by (45). Suppose that the deviation is
profitable. Then it must satisfy the following conditions:

(IIa) By applying to wd, a w−2-applicant’s expected surplus is equal to E(w−2);
(IIb) The deviating firm earns an expected surplus greater than C;
(IIc) A wd-applicant’s future application is indeed to w+1 instead of w.
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Condition (IIa) requires qd[J d
e (wd) − Je(w−2)] = E(w−2) = Cq−1/ f−1. Using (18)

and substituting (J d
e (wd), Je(w)), we have

Jd
e (wd) − Je(w−2)

= [Je(w) − Je(w−1)] + [Je(w−1) − Je(w−2)] + [
J d

e (wd) − Je(w)
]

= C
f

+ C
f−1

− (w − wd)

r + σ + λ1q+1

Thus, (IIa) requires:

wd = w − C(r + σ + λ1q+1)

(
1

f
+ 1

f−1

− q−1

qd f−1

)
(E.1)

The constraint (IIc) requires q+1[Je(w+1) − J d
e (wd)] ≥ q[Je(w) − J d

e (wd)]. Us-
ing (18) to substitute Je(w+1), noting that Je(w) − J d

e (wd) = (w − wd)/(r + σ +
λ1 q+1), and substituting wd from (E.1), we can rewrite (IIc) as follows:

qd ≤ q−1

/[
1 + f−1

(
1

f
− q+1

(q − q+1) f+1

)]
(E.2)

Let β be the level of ad that satisfies (E.2) as equality. Since qd = q(ad) is a
decreasing function of ad, (E.2) is equivalent to ad ≥ β.

A type II deviating firm chooses (wd, ad) to maximize π(ad) = hdJd
f (wd), subject

to (E.1) and (E.2). Substituting wd from (E.1), J d
f (wd) from the text, and (y − w)

from (17), we write the deviator’s expected surplus as follows:

π(ad) = C[(y − w) + (w − wd)]

r + σ + λ1q+1

= C
[

hd
(

1

h
+ 1

f
+ 1

f−1

)
− adq−1

f−1

]
If the constraint (E.2) does not bind, then π(ad) is maximized at ad = A that solves
π ′(A) = 0, that is,

A= ln

[
1

q−1

(
1 + f−1

(
1

h
+ 1

f

))]
(E.3)

Because a−1 > a − ln (1 + a) by Proposition 2, it can be shown that A > a−1. The
maximum of π(ad) without the constraint (E.2) is

π(A) = C(eA − 1 − A)/(ea−1 − 1 − a−1) > C

Thus, for the deviation to be not profitable, the constraint (E.2) must bind to keep
ad a sufficient distance away from A. We make this requirement more explicit
below.
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Because A is the unique maximizer of π(ad) and π(A) > C, there exist A1 and
A2, with A ∈ (A1, A2), such that π(Ai) = C, for i = 1, 2. Clearly, π(ad) > C iff
ad ∈ (A1, A2), and π ′(A1) > 0 > π ′(A2). Because a type II deviation must satisfy
ad ≥ β (i.e., the constraint (IIc)), the deviation is not profitable if and only if either
β ≥ A2 or β ≤ ad ≤ A1. In the remainder of this proof, we rewrite these conditions
to obtain the condition (47) in the lemma. Let us denote Y = q+1/[(q − q+1) f +1]
in this section of the Appendix.

First, we show that β > A1, and so the case β ≤ ad ≤ A1 never occurs. The
inequality β > A1 holds iff q(β) < q(A1) and hence iff

q(A1) >
q−1

1 + f−1

(
1
f − Y

) =
q(A1)

[
1 + f−1

(
1
h + 1

f

)]
− f−1/A1

1 + f−1

(
1
f − Y

) .

Here we have used the definition of q(β) first and then the definition of A1 to
substitute for q−1. Rearranging terms and using the definition of β∗ in (46), the
above inequality is equivalent to h(A1) < h(β∗). So, β > A1 is equivalent to β∗ >

A1. Because a < φ(a+1), Y < 1/f , and so

h(β∗) >

(
1

h
+ 1

f

)−1

= 1 − (1 + a)e−a

A sufficient condition for β∗ > A1 is then A1 < a − ln(1 + a). Because a −
ln (1 + a) < a−1 by Proposition 2 and a−1 < Aas shown in the text, a − ln (1 + a) <

A. Because π ′ (ad) > 0 for all ad < A and π(A1) = C, then A1 < a − ln (1 + a)
iff π(a − ln (1 + a)) > C. Calculating π(a − ln (1 + a)) and rearranging terms,
the latter condition becomes q(a − ln (1 + a)) > q−1, which is satisfied because
q(·) is a decreasing function and a − ln (1 + a) < a−1. Now that β > A1, a type II
deviation is not profitable iff β ≥ A2.

Second, we show that β ≥ A2 iff β∗ ≥ β. Similar to the above procedure that
showed β > A1 iff β∗ > A1, we can show that β ≥ A2 iff β∗ ≥ A2. Because β∗ >

A1, as shown above, and π(A2) = C, the inequality β∗ ≥ A2 holds iff π(β∗) ≤ C.
Substituting π(β∗), we rewrite the latter condition as

0 ≤ 1

h(β∗)
−

(
1

h
+ 1

f
+ 1

f−1

)
+ β∗

h(β∗)

q−1

f−1

=
(

1

h
+ Y

)
−

(
1

h
+ 1

f
+ 1

f−1

)
+ q−1

q(β∗) f−1

= q−1

q(β∗) f−1

−
(

1

f−1

+ 1

f
− Y

)
Using the equation that defines β to substitute for q−1, we can rewrite the above
inequality further as q(β∗) ≤ q(β). Thus, β ≥ A2 holds iff β∗ ≥ β.
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Finally, we show that β∗ ≥ β is equivalent to (47). To do so, rewrite (C.2) as

1

f
− Y = 1

h−1

− r + σ + λ1q+1

r + σ + λ1q

(
1

h
+ Y

)
Then, β∗ ≥ β iff 1/q(β∗) ≥ 1/q(β), and hence iff

0 ≤ 1

q(β∗)
− 1

q−1

{
1 + f−1

[
1

h−1

− r + σ + λ1q+1

r + σ + λ1q

(
1

h
+ Y

)]}
= 1

q(β∗)
− 1

q−1

(
1 + f−1

h−1

)
+

(
r + σ + λ1q+1

r + σ + λ1q

)
f−1

q−1h(β∗)

= 1

q(β∗)
− ea−1 +

(
r + σ + λ1q+1

r + σ + λ1q

) (
ea−1 − 1 − a−1

)/
h(β∗)

The inequality comes from substituting the definition of β and the term ( 1
f − Y);

the two equalities come from substituting the definitions of h(β∗) and f . Multiply-
ing the above inequality by h(β∗) yields (47). �

F. Proofs of Propositions 5 and 6. We prove Proposition 5 first. Property (i)
holds because E(w−1) = Cq/f > Cq+1/f +1 = E(w) and E(wM−1) ≥ S (see (23)
or equivalently the first part of (24)). To establish (ii), use (C.1) to rewrite it as

R + q
f

− R + q+1

f+1

− q+1

f+1

+ q+2

f+2

> 0

where R = (r + σ )/λ1. For the computed sequence to be an equilibrium, we need
q > q+1(1 + f /f +1) (see (40)). Under this condition, the left-hand side of the
above inequality is greater than the following expression:

(R + q+1)

(
1

f
− 1

f+1

)
+ q+2

f+2

This expression is clearly positive, because a < a+1 and f (·) is an increasing func-
tion. Thus, Proposition 5 holds.

To prove Proposition 6, recall that the density of offer wages is (vi) and of
employed wages (ni/(1 − u)), where i = 1, 2, . . . , M. So, the density of offer wages
is a decreasing function iff v−1 > v and the density of employed wages is decreasing
iff n−1 > n. By (38) and (14), n−1/n = ( σ

λ1
+ q+1)/q and v−1/v = (n−2 a)/(n−1 a−1)

for all i ≥ 3. For all i ≥ 3, we have

v−1

v
=

(
a

σ

λ1

+ h
)/

h−1 >
h

h−1

> 1

Similarly, the result holds for i = 2; i.e., v1/v2 > h2/h1 > 1.
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The density of employed wages is a decreasing function iff σ/λ1 > q − q+1.
Because qM+1 = 0, the density of employed wages is decreasing at the upper end
of the wage support (i.e., nM−1 > nM) iff σ/λ1 > qM. Because q(·) is a decreasing
function and aM ≥ ā − ln(1 + ā) by (24), a sufficient condition for nM−1 > nM is
σ/λ1 > q(ā − ln(1 + ā)), which can be rewritten as (48). When r is sufficiently
close to 0, this condition is satisfied iff (r + σ )/λ1 > q(ā − ln(1 + ā)). Because
(r + σ )/λ1 ≥ f (ā)/ā by Assumption 1, (48) is satisfied if f (ā)/ā > q(ā − ln(1 +
ā)), which is equivalent to ā > 1.605 and hence to C/S > 2.373. Similarly, because
aM ≤ ā by (24), a sufficient condition for nM−1 < nM is σ/λ1 < q(ā). �

G. Markov Perfect Equilibrium. In this section, we formulate the Markov
perfect equilibrium, discuss the analytical difficulties of using this formulation,
and then use a numerical example to show the discrepancy between the perfect
equilibrium and the Nash equilibrium constructed in the text.

A Markov perfect equilibrium in the described environment has three require-
ments. First, given any distribution of workers, recruiting firms’ optimal strategy is
to use the function q(·) to describe employment probabilities for all possible wages.
Second, given the distribution of job openings, the applicants’ optimal strategy is
a function T(·); that is, for every w, T(w) describes the optimal target wages for
an applicant currently employed at wage w. Third, the players’ strategies in the
period and the distribution of workers at the beginning of the period imply the
distribution of workers at the beginning of next period.

The third requirement is easy to implement, as we focus on equilibria where the
distribution of workers is stationary (see (38)). For the second requirement, we
examine only those subgames where the distribution of job openings is consistent
with the free-entry condition. This requirement determines the function q(·), as
we will describe later. Thus, the main task of characterizing a Markov equilibrium
is to characterize the function T(·).

To characterize T, take any decreasing probability function q(·) and formulate
the applicants’ problem. Note that the function q(w) must be specified for all w,
not only for equilibrium wages. For convenience, set q(∅) = 0. Define

F(w) = w + λ(w) max{E(w) − S, 0}

where E(w) is a w-applicant’s market surplus. We can use (9) to write a worker’s
value function as Je(w) = [F(w) + σ Ju]/(r + σ ). The expected surplus of an
applicant for a job at w′ is

q(w′)[Je(w′) − Je(w)] = 1

r + σ
q(w′)[F(w′) − F(w)]

The applicant applies to w′ only if the expected surplus is greater than or equal to
S. Therefore, a w-applicant’s market surplus is

E(w) = max

{
1

r + σ
max

w′
{q(w′)[F(w′) − F(w)]}, S

}
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In the inner maximization, the applicant takes the function q(·) as given. If the
inner maximization generates a value greater than (r + σ )S, the applicant’s target
set T(w) is nonempty. Otherwise, T(w) = ∅. With this notation, the case E(w) =
S means that a w-applicant does not apply.

Substituting the above formula of E(w) into the definition of F, we obtain

F(w) = w + λ(w) max

{
1

r + σ
max

w′

{
q(w′)[F(w′) − F(w)]

} − S, 0

}
(G.1)

This is a fixed-point problem for F, and the maximizer for the inner maximization
gives T(·). Under reasonable conditions, we can show that the right-hand side of
(G.1) is a contraction mapping, and so there is a unique function F(·) that satisfies
the functional equation.

Next, to find the function q(·), we use the free-entry condition: h(w)Jf (w) =
C. Substituting Jf from (8), ρ (w) = λ (w)q(T(w)) and Jv = 0, we can write this
condition as q(w) = Pq(w), where P is the following mapping:

Pq(w) = �

(
r + σ + λ(w)q(T(w))

y − w
C

)
(G.2)

The function �, defined in (5) is a decreasing function. Thus, q(·) is a fixed point
of P.

It is difficult to examine the fixed-point problem for q, because the maximizer
T(w) to the fixed-point problem (G.1) appears in the mapping P. This difficulty
exists even when we assume that T(w) is singleton for every w and that T(·) is
continuous. The source of the difficulty is that we need the given function q(·) in
(G.1) to be decreasing to ensure well-behaved fixed point F (and to make economic
sense). In turn, this requires that the fixed point of P be decreasing, and hence that
P maps decreasing functions into decreasing functions. However, we cannot find
meaningful conditions to guarantee that P has this property. All such conditions
involve T, which in turn involves the very object q(·) that we need to determine in
equilibrium. Such a difficulty would not arise if there were no on-the-job search,
because then Pq(w) = �( r+σ

y−w
C) is clearly a decreasing function.

Nevertheless, the above formulation suggests the following procedure to com-
pute a Markov equilibrium numerically. Start with a decreasing function q(·) and
find the fixed point F in (G.1). Substitute the maximizer T into (G.2) to compute
Pq(w). Then, use this solution Pq(w) to serves the role of q(w) in (G.1). Repeat
the process until Pq(·) = q(·).

To see the discrepancy between the Markov equilibrium and the Nash equilib-
rium constructed in the text, consider the following parameter values: r = 0.02,
y = 1000, b = 0, C = 60, S = 1, λ1 = λ0 = .025, and σ = .125 (this is the example
of Section 6.2, except for λ1 = λ0). Discretize the interval between b and y and set
the number of points on the grid to be 25,000. The equilibrium number of rungs
on the wage ladder is M = 4 in both equilibria. We list the results in Table G.1.

The two equilibria are very close to each other. The maximum discrepancy
in equilibrium wages between the two types of equilibria is about 0.04%. This
discrepancy is small, especially when we consider the following two factors. First,
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TABLE G.1

NASH VERSUS MARKOV EQUILIBRIUM DISTRIBUTIONS

w1 w2 w3 w4

Nash 929.005 980.004 988.339 990.679

Markov 929.043 980.401 988.640 990.760

Discrepancy 0.004% 0.040% 0.031% 0.008%

the objects to be discretized in the numerical procedures are different for the
two equilibria. For the Nash equilibrium, we discretized the interval of the hiring
probability hM and, for the Markov equilibrium, we discretized the interval of
the wage level. Second, the function q(w) is highly nonlinear. It remains flat at
low wages but sharply declines at high wages, with a slope approaching −∞ as
w approaches the upper bound. Such nonlinearity reduces the accuracy of the
numerical results.
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